Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian

被引:39
|
作者
Zhang Binlin [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Wang, Li [4 ]
机构
[1] Heilongjiang Inst Technol, Dept Math, Harbin 150050, Heilongjiang, Peoples R China
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest 014700, Romania
[4] East China Jiaotong Univ, Coll Sci, Nanchang 330013, Jiangxi, Peoples R China
基金
中国国家自然科学基金; 黑龙江省自然科学基金;
关键词
Fractional Laplacian; Kirchhoff-type problem; critical groups; Morse theory; NONTRIVIAL SOLUTIONS; MULTIPLICITY;
D O I
10.1017/prm.2018.105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of solutions for Kirchhoff-type superlinear problems involving non-local integro-differential operators. As a particular case, we consider the following Kirchhoff-type fractional Laplace equation:.{M(integral integral(R2N) vertical bar u(x) -u(y)vertical bar(2)/vertical bar x-y vertical bar(N vertical bar 2s) dxdy) (-Delta)(s)u = f(x,u) in Omega, , where (-.)s is the fractional Laplace operator, s. (0, 1), N > 2s, O is an open bounded subset of RN with smooth boundary.O, M : R+ 0. R+ is a continuous function satisfying certain assumptions, and f(x, u) is superlinear at infinity. By computing the critical groups at zero and at infinity, we obtain the existence of non-trivial solutions for the above problem via Morse theory. To the best of our knowledge, our results are new in the study of Kirchhoff-type Laplacian problems.
引用
收藏
页码:1061 / 1081
页数:21
相关论文
共 50 条
  • [1] Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian
    Pan, Ning
    Pucci, Patrizia
    Zhang, Binlin
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (02) : 385 - 409
  • [2] Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian
    Ning Pan
    Patrizia Pucci
    Binlin Zhang
    Journal of Evolution Equations, 2018, 18 : 385 - 409
  • [3] Superlinear Kirchhoff-type problems of the fractional p-Laplacian without the (AR) condition
    Zuo, Jiabin
    An, Tianqing
    Li, Mingwei
    BOUNDARY VALUE PROBLEMS, 2018,
  • [4] KIRCHHOFF-TYPE DIFFERENTIAL INCLUSION PROBLEMS INVOLVING THE FRACTIONAL LAPLACIAN AND STRONG DAMPING
    Xiang, Mingqi
    Zhang, Binlin
    Hu, Die
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 651 - 669
  • [5] Kirchhoff-type problems involving the fractional p-Laplacian on the Heisenberg group
    Zhou, Jieyu
    Guo, Lifeng
    Zhang, Binlin
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (03) : 1133 - 1157
  • [6] Kirchhoff-type problems involving the fractional p-Laplacian on the Heisenberg group
    Jieyu Zhou
    Lifeng Guo
    Binlin Zhang
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 1133 - 1157
  • [7] EXISTENCE RESULTS FOR KIRCHHOFF TYPE SCHRODINGER-POISSON SYSTEM INVOLVING THE FRACTIONAL LAPLACIAN
    Wang, Li
    Wang, Jun
    Zhang, Binlin
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (05) : 1831 - 1848
  • [8] A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems
    Wang, Li
    Cheng, Kun
    Zhang, Binlin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03) : 1859 - 1875
  • [9] Existence and non-existence results for fractional Kirchhoff Laplacian problems
    Nemat Nyamoradi
    Vincenzo Ambrosio
    Analysis and Mathematical Physics, 2021, 11
  • [10] Existence and non-existence results for fractional Kirchhoff Laplacian problems
    Nyamoradi, Nemat
    Ambrosio, Vincenzo
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)