Positive quaternionic Kahler manifolds and symmetry rank

被引:0
作者
Fang, FQ [1 ]
Niteroi, TJ
机构
[1] Nankai Univ, Nankai Inst Math, Tianjin 300071, Peoples R China
[2] Univ Fed Fluminense, Inst Matemat, Niteroi, RJ, Brazil
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2004年 / 576卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quaternionic Kahler manifold M is called positive if it has positive scalar curvature. The main purpose of this paper is to prove several connectedness theorems for quaternionic immersions in a quaternionic Kahler manifold, e.g. the Barth-Lefschetz type connectedness theorem for quaternionic submanifolds in a positive quaternionic Kahler manifold. As applications we prove that, among others, a 4m-dimensional positive quaternionic Kahler manifold with symmetry rank at least (m - 2) must be either isometric to HPm or Gr(2)(Cm+2), if m greater than or equal to 10.
引用
收藏
页码:149 / 165
页数:17
相关论文
共 50 条
  • [31] More on the triplet Killing potentials of quaternionic Kahler manifolds
    Aoyama, S
    PHYSICS LETTERS B, 2005, 625 (1-2) : 127 - 134
  • [32] Curvature properties of twistor spaces of quaternionic kahler manifolds
    Alexandrov B.
    Grantcharov G.
    Ivanov S.
    Journal of Geometry, 1998, 62 (1-2) : 1 - 12
  • [33] Quaternionic Kahler and hyperKahler manifolds with torsion and twistor spaces
    Ivanov, S
    Minchev, I
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 567 : 215 - 233
  • [34] Compact Einstein spaces based on quaternionic Kahler manifolds
    Hiragane, M
    Yasui, Y
    Ishihara, H
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (18) : 3933 - 3950
  • [35] Anti-instantons on a class of quaternionic Kahler manifolds
    Fowdar, Udhav
    QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (04) : 1403 - 1413
  • [36] Homogeneous quaternionic Kahler manifolds of unimodular group.
    Alekseevsky, DV
    Cortes, V
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1997, 11B : 217 - 229
  • [37] A Class of Locally Inhomogeneous Complete Quaternionic Kahler Manifolds
    Cortes, Vicente
    Gil-Garcia, Alejandro
    Saha, Arpan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 403 (03) : 1611 - 1626
  • [38] Quaternionic contact hypersurfaces in hyper-Kahler manifolds
    Ivanov, Stefan
    Minchev, Ivan
    Vassilev, Dimiter
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (01) : 245 - 267
  • [39] Eigenvalue estimates for the Dirac operator on quaternionic Kahler manifolds
    Kramer, W
    Semmelmann, U
    Weingart, G
    MATHEMATISCHE ZEITSCHRIFT, 1999, 230 (04) : 727 - 751
  • [40] EINSTEIN-METRICS AND QUATERNIONIC KAHLER-MANIFOLDS
    WANG, MY
    MATHEMATISCHE ZEITSCHRIFT, 1992, 210 (02) : 305 - 326