Positive quaternionic Kahler manifolds and symmetry rank

被引:0
|
作者
Fang, FQ [1 ]
Niteroi, TJ
机构
[1] Nankai Univ, Nankai Inst Math, Tianjin 300071, Peoples R China
[2] Univ Fed Fluminense, Inst Matemat, Niteroi, RJ, Brazil
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2004年 / 576卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quaternionic Kahler manifold M is called positive if it has positive scalar curvature. The main purpose of this paper is to prove several connectedness theorems for quaternionic immersions in a quaternionic Kahler manifold, e.g. the Barth-Lefschetz type connectedness theorem for quaternionic submanifolds in a positive quaternionic Kahler manifold. As applications we prove that, among others, a 4m-dimensional positive quaternionic Kahler manifold with symmetry rank at least (m - 2) must be either isometric to HPm or Gr(2)(Cm+2), if m greater than or equal to 10.
引用
收藏
页码:149 / 165
页数:17
相关论文
共 50 条