Positive quaternionic Kahler manifolds and symmetry rank

被引:0
|
作者
Fang, FQ [1 ]
Niteroi, TJ
机构
[1] Nankai Univ, Nankai Inst Math, Tianjin 300071, Peoples R China
[2] Univ Fed Fluminense, Inst Matemat, Niteroi, RJ, Brazil
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2004年 / 576卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A quaternionic Kahler manifold M is called positive if it has positive scalar curvature. The main purpose of this paper is to prove several connectedness theorems for quaternionic immersions in a quaternionic Kahler manifold, e.g. the Barth-Lefschetz type connectedness theorem for quaternionic submanifolds in a positive quaternionic Kahler manifold. As applications we prove that, among others, a 4m-dimensional positive quaternionic Kahler manifold with symmetry rank at least (m - 2) must be either isometric to HPm or Gr(2)(Cm+2), if m greater than or equal to 10.
引用
收藏
页码:149 / 165
页数:17
相关论文
共 50 条
  • [1] Positive quaternionic Kahler manifolds and symmetry rank: II
    Fang, Fuquan
    MATHEMATICAL RESEARCH LETTERS, 2008, 15 (04) : 641 - 651
  • [2] On positive quaternionic Kahler manifolds with certain symmetry rank
    Kim, Jin Hong
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 172 (01) : 157 - 169
  • [3] On positive quaternionic Kähler manifolds with certain symmetry rank
    Jin Hong Kim
    Israel Journal of Mathematics, 2009, 172 : 157 - 169
  • [4] Curvature of quaternionic Kahler manifolds with S1-symmetry
    Cortes, V.
    Saha, A.
    Thung, D.
    MANUSCRIPTA MATHEMATICA, 2022, 168 (1-2) : 35 - 64
  • [5] Symmetries of quaternionic Kahler manifolds with S1-symmetry
    Cortes, V
    Saha, A.
    Thung, D.
    TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 8 (01): : 95 - 119
  • [6] ON POSITIVE QUATERNIONIC KAHLER MANIFOLDS WITH b4=1
    Kim, Jin Hong
    Lee, Hee Kwon
    OSAKA JOURNAL OF MATHEMATICS, 2012, 49 (03) : 551 - 562
  • [7] QUATERNIONIC KAHLER 8-MANIFOLDS WITH POSITIVE SCALAR CURVATURE
    POON, YS
    SALAMON, SM
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (02) : 363 - 378
  • [8] Quaternionic maps between quaternionic Kahler manifolds
    Li, JY
    Zhang, X
    MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (03) : 523 - 537
  • [9] QUATERNIONIC KAHLER-MANIFOLDS
    SALAMON, S
    INVENTIONES MATHEMATICAE, 1982, 67 (01) : 143 - 171
  • [10] On Certain Kahler Quotients of Quaternionic Kahler Manifolds
    Cortes, V.
    Louis, J.
    Smyth, P.
    Triendl, H.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 317 (03) : 787 - 816