Decomposing uniform hypergraphs into uniform hypertrees and single edges

被引:0
|
作者
Kang, Liying [1 ]
Ni, Zhenyu [1 ]
Shan, Erfang [2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sch Management, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypergraph; Hypertree; Decomposition; MINIMUM H-DECOMPOSITIONS; GRAPHS;
D O I
10.1016/j.disc.2021.112454
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two r-uniform hypergraphs G and H, an H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a hypergraph isomorphic to H. Let phi(r)(n, H) be the smallest integer such that any r-uniform hypergraph G of order n admits an H-decomposition with at most phi(r)(n, H) parts. In this paper we determine the exact value of phi(r)(n, H) when H is an arbitrary r-uniform hypertree with t edges. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A Dirac-Type Theorem for Uniform Hypergraphs
    Ma, Yue
    Hou, Xinmin
    Gao, Jun
    GRAPHS AND COMBINATORICS, 2024, 40 (04)
  • [32] New Results on Degree Sequences of Uniform Hypergraphs
    Behrens, Sarah
    Erbes, Catherine
    Ferrara, Michael
    Hartke, Stephen G.
    Reiniger, Benjamin
    Spinoza, Hannah
    Tomlinson, Charles
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (04):
  • [33] On the Laplacian spectrum of k-uniform hypergraphs
    Saha, S. S.
    Sharma, K.
    Panda, S. K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 655 : 1 - 27
  • [34] Total transversals and total domination in uniform hypergraphs
    Bujtas, Csilla
    Henning, Michael A.
    Tuza, Zsolt
    Yeo, Anders
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (02):
  • [35] The second largest spectral radii of uniform hypertrees with given size of matching
    Su, Li
    Kang, Liying
    Li, Honghai
    Shan, Erfang
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (14): : 2674 - 2701
  • [36] A note on the least number of edges of 3-uniform hypergraphs with upper chromatic number 2
    Diao, KF
    Liu, GZ
    Rautenbach, D
    Zhao, P
    DISCRETE MATHEMATICS, 2006, 306 (07) : 670 - 672
  • [37] Minimizing the distance spectral radius of uniform hypertrees with given parameters
    Li, Chengli
    Zhou, Bo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [38] On distance spectral radius of uniform hypergraphs
    Lin, Hongying
    Zhou, Bo
    Li, Yaduan
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (03): : 497 - 513
  • [39] RELATIVE TURAN PROBLEMS FOR UNIFORM HYPERGRAPHS
    Spiro, Sam
    Verstraete, Jacques
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (03) : 2170 - 2191
  • [40] Covering non-uniform hypergraphs
    Boros, E
    Caro, Y
    Füredi, Z
    Yuster, R
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 82 (02) : 270 - 284