Generalized iterated maximal essential extensions of rings

被引:1
|
作者
Andruszkiewicz, RR [1 ]
机构
[1] Univ Bialystok, Inst Math, PL-15267 Bialystok, Poland
关键词
metaideal; accessible subring; essential subring; integral domain;
D O I
10.1007/s100110300014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A necessary and sufficient condition for the existence of GIME(A), the generalized iterated maximal essential extension of an associative ring A, is obtained provided that A is commutative. Some properties of GIME(A) are described, in particular, when A is semiprime or commutative. An example of a prime ring A having no GIME(A) is constructed.
引用
收藏
页码:109 / 120
页数:12
相关论文
共 50 条
  • [31] POLYNOMIAL EXTENSIONS OF GENERALIZED QUASI-BAER RINGS
    Ghalandarzadeh, S.
    Javadi, H. S.
    Khoramdel, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (05) : 804 - 808
  • [32] Polynomial extensions of generalized quasi-Baer rings
    S. Ghalandarzadeh
    H. S. Javadi
    M. Khoramdel
    Ukrainian Mathematical Journal, 2010, 62 : 804 - 808
  • [33] Positively graded rings which are maximal orders and generalized Dedekind prime rings
    Wijayanti, Indah Emilia
    Marubayashi, Hidetoshi
    Sutopo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (08)
  • [34] Iterated antiderivative extensions
    Srinivasan, V. Ravi
    JOURNAL OF ALGEBRA, 2010, 324 (08) : 2042 - 2051
  • [35] Nonparametric Iterated-Logarithm Extensions of the Sequential Generalized Likelihood Ratio Test
    Shin J.
    Ramdas A.
    Rinaldo A.
    IEEE Journal on Selected Areas in Information Theory, 2021, 2 (02): : 691 - 704
  • [36] Subgraph of generalized co-maximal graph of commutative rings
    B. Biswas
    S. Kar
    M. K. Sen
    Soft Computing, 2022, 26 : 1587 - 1596
  • [37] Subgraph of generalized co-maximal graph of commutative rings
    Biswas, B.
    Kar, S.
    Sen, M. K.
    SOFT COMPUTING, 2022, 26 (04) : 1587 - 1596
  • [38] On cyclic essential extensions of simple modules over differential operator rings
    Sant'Ana, Alveri
    Vinciguerra, Robson
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (09) : 3629 - 3648
  • [39] Simplicity of iterated Ore extensions
    Balodi, Mamta
    Upadhyay, Sumit Kumar
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (03)
  • [40] DOUBLE ORE EXTENSIONS VERSUS ITERATED ORE EXTENSIONS
    Carvalho, Paula A. A. B.
    Lopes, Samuel A.
    Matczuk, Jerzy
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (08) : 2838 - 2848