Effect of Tissue Boundaries on The Intra-Body Communication Channel at 2.38 GHz

被引:0
|
作者
El-Saboni, Yomna [1 ]
Conway, Gareth A. [1 ]
Scanlon, William G. [1 ]
机构
[1] Queens Univ Belfast, Ctr Wireless Innovat, Inst Elect Commun & Informat Technol, Belfast BT3 9DT, Antrim, North Ireland
关键词
Intra-body; implantable antennas; hetergenous human tissue phantom; path gain; medical device; PROPAGATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A study of the intra-body propagation channel between two identical tissue implanted antennas is presented. To investigate the effect of the tissue boundaries, the channel between the two implants is evaluated within a tissue layered numerical phantom with both insulated and un-insulated antenna structures in the MedRadio operating band (2.36-2.40 GHz). The results demonstrate how wave propagation between the antennas inside the same block of tissue is largely unaffected by changes in the peripheral surrounding tissues, irrespective of their material characteristics. On the contrary, propagation across tissue boundaries is affected by the boundary and the path distance within each tissue according to the dielectric parameters involved.
引用
收藏
页码:285 / 288
页数:4
相关论文
共 50 条
  • [31] Survey on security in intra-body area network communication
    Kompara, Marko
    Holbl, Marko
    AD HOC NETWORKS, 2018, 70 : 23 - 43
  • [32] Context aware service using intra-body communication
    Park, Duck Gun
    Kim, Jin Kyung
    Bong, Sung Jin
    Hwang, Jun Hwan
    Hyung, Chang Hee
    Kang, Sung Weon
    PERCOM 2006: FOURTH ANNUAL IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS, PROCEEDINGS, 2006, : 84 - +
  • [33] Development and performance analysis of an intra-body communication device
    Hachisuka, K
    Nakata, A
    Takeda, T
    Terauchi, Y
    Shiba, K
    Sasaki, K
    Hosaka, H
    Itao, K
    BOSTON TRANSDUCERS'03: DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2003, : 1722 - 1725
  • [34] MAGIC: Magnetic Resonant Coupling for Intra-body Communication
    Banou, Stella
    Li, Kai
    Chowdhury, Kaushik
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2020, : 1549 - 1558
  • [35] Health Monitoring System Based on Intra-Body Communication
    Razak, A. H. A.
    Ibrahim, I. W.
    Ayub, A. H.
    Amri, M. F.
    Hamzi, M. H.
    Halim, A. K.
    Ahmad, A.
    Al Junid, S. A. M.
    4TH INTERNATIONAL CONFERENCE ON ELECTRONIC DEVICES, SYSTEMS AND APPLICATIONS 2015 (ICEDSA), 2015, 99
  • [36] Intra-Body Channel Characterization of Medical Implant Devices
    De Santis, Valerio
    Feliziani, Mauro
    10TH INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, 2011, : 816 - 819
  • [37] Communication Theoretical Understanding of Intra-Body Nervous Nanonetworks
    Malak, Derya
    Akan, Ozgur B.
    IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (04) : 129 - 135
  • [38] Characterization of Ultrasonic Wave Propagation for Intra-Body Communication
    Rivet, Francois
    Redois, Samuel
    Deval, Yann
    INTELLIGENT ENVIRONMENTS 2016, 2016, 21 : 538 - 543
  • [39] Review of the Modeling, Simulation and Implement of Intra-body Communication
    Song, Yong
    Hao, Qun
    Zhang, Kai
    DEFENCE TECHNOLOGY, 2013, 9 (01): : 10 - 17
  • [40] Radiated noise analysis via human body for intra-body communication
    Hayashida, Yuki
    Hasegawa, Mari
    Suzuki, Akito
    Shinagawa, Mitsuru
    Kado, Yuichi
    Haga, Nozomi
    MEASUREMENT, 2016, 89 : 159 - 165