Next Generation High Throughput Sequencing to Assess Microbial Communities: An Application Based on Water Quality

被引:22
作者
Wani, Gowher A. [1 ]
Khan, Mohd Asgar [1 ]
Dar, Mudasir A. [1 ]
Shah, Manzoor A. [1 ]
Reshi, Zafar A. [1 ]
机构
[1] Univ Kashmir, Dept Bot, Srinagar 190006, Jammu & Kashmir, India
关键词
Metagenomics; Next generation sequencing; Water quality; Bacterial community composition; Public health; SOURCE TRACKING; METAGENOMIC ANALYSIS; SURFACE WATERS; DIVERSITY; PATHOGENS; VIRUSES; DNA;
D O I
10.1007/s00128-021-03195-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Traditional techniques to identify different contaminants (biological or chemical) in the waters are slow, laborious, and can require specialized expertise. Hence, the rapid determination of water quality using more sensitive and reliable metagenomic based approaches attains special importance. Metagenomics deals with the study of genetic material that is recovered from microbial communities present in environmental samples. In traditional techniques cultivation-based methodologies were used to describe the diversity of microorganisms in environmental samples. It has failed to function as a robust marker because of limited taxonomic and phylogenetic implications. In this backdrop, high-throughput DNA sequencing approaches have proven very powerful in microbial source tracking because of investigating the full variety of genome-based analysis such as microbial genetic diversity and population structure played by them. Next generation sequencing technologies can reveal a greater proportion of microbial communities that have not been reported earlier by traditional techniques. The present review highlights the shift from traditional techniques for the basic study of community composition to next-generation sequencing (NGS) platforms and their potential applications to the biomonitoring of water quality in relation to human health.
引用
收藏
页码:727 / 733
页数:7
相关论文
共 52 条
[21]   Human health risks by potentially toxic metals in drinking water along the Hattar Industrial Estate, Pakistan [J].
Jehan, Shah ;
Khattak, Seema Anjum ;
Muhammad, Said ;
Ali, Liaqat ;
Rashid, Abdur ;
Hussain, Mian Luqman .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (03) :2677-2690
[22]   Unlocking the potential of metagenomics through replicated experimental design [J].
Knight, Rob ;
Jansson, Janet ;
Field, Dawn ;
Fierer, Noah ;
Desai, Narayan ;
Fuhrman, Jed A. ;
Hugenholtz, Phil ;
van der Lelie, Daniel ;
Meyer, Folker ;
Stevens, Rick ;
Bailey, Mark J. ;
Gordon, Jeffrey I. ;
Kowalchuk, George A. ;
Gilbert, Jack A. .
NATURE BIOTECHNOLOGY, 2012, 30 (06) :513-520
[23]   Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat [J].
Victor Kunin ;
Jeroen Raes ;
J Kirk Harris ;
John R Spear ;
Jeffrey J Walker ;
Natalia Ivanova ;
Christian von Mering ;
Brad M Bebout ;
Norman R Pace ;
Peer Bork ;
Philip Hugenholtz .
Molecular Systems Biology, 4 (1)
[24]   Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences [J].
Langille, Morgan G. I. ;
Zaneveld, Jesse ;
Caporaso, J. Gregory ;
McDonald, Daniel ;
Knights, Dan ;
Reyes, Joshua A. ;
Clemente, Jose C. ;
Burkepile, Deron E. ;
Thurber, Rebecca L. Vega ;
Knight, Rob ;
Beiko, Robert G. ;
Huttenhower, Curtis .
NATURE BIOTECHNOLOGY, 2013, 31 (09) :814-+
[25]   Recovering sustainable water from wastewater [J].
Levine, AD ;
Asano, T .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (11) :201A-208A
[26]   Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture [J].
Li, Cheng ;
Cui, Ya-Long ;
Tian, Gui-Li ;
Shu, Yi ;
Wang, Xue-Feng ;
Tian, He ;
Yang, Yi ;
Wei, Fei ;
Ren, Tian-Ling .
SCIENTIFIC REPORTS, 2015, 5
[27]   The impact of next-generation sequencing technology on genetics [J].
Mardis, Elaine R. .
TRENDS IN GENETICS, 2008, 24 (03) :133-141
[28]   Genome sequencing in microfabricated high-density picolitre reactors [J].
Margulies, M ;
Egholm, M ;
Altman, WE ;
Attiya, S ;
Bader, JS ;
Bemben, LA ;
Berka, J ;
Braverman, MS ;
Chen, YJ ;
Chen, ZT ;
Dewell, SB ;
Du, L ;
Fierro, JM ;
Gomes, XV ;
Godwin, BC ;
He, W ;
Helgesen, S ;
Ho, CH ;
Irzyk, GP ;
Jando, SC ;
Alenquer, MLI ;
Jarvie, TP ;
Jirage, KB ;
Kim, JB ;
Knight, JR ;
Lanza, JR ;
Leamon, JH ;
Lefkowitz, SM ;
Lei, M ;
Li, J ;
Lohman, KL ;
Lu, H ;
Makhijani, VB ;
McDade, KE ;
McKenna, MP ;
Myers, EW ;
Nickerson, E ;
Nobile, JR ;
Plant, R ;
Puc, BP ;
Ronan, MT ;
Roth, GT ;
Sarkis, GJ ;
Simons, JF ;
Simpson, JW ;
Srinivasan, M ;
Tartaro, KR ;
Tomasz, A ;
Vogt, KA ;
Volkmer, GA .
NATURE, 2005, 437 (7057) :376-380
[29]   Sequence-enabled community-based microbial source tracking in surface waters using machine learning classification: A review [J].
Mathai, Prince P. ;
Staley, Christopher ;
Sadowsky, Michael J. .
JOURNAL OF MICROBIOLOGICAL METHODS, 2020, 177
[30]   Metagenomics for pathogen detection in public health [J].
Miller, Ruth R. ;
Montoya, Vincent ;
Gardy, Jennifer L. ;
Patrick, David M. ;
Tang, Patrick .
GENOME MEDICINE, 2013, 5