An energy dispersive X-lay fluorescence analysis was applied for determining the spatial (two-dimensional) distribution of elemental concentrations in rat brain sections. Freeze-dried brain sections prepared from normal and ischemic rats with middle cerebral artery occlusion were scanned with a collimated X-ray beam (0.18 mm in diameter, 50-kV acceleration voltage). The fluorescent K alpha X-lays of P, S, Cl, and K were detectable, so that the two-dimensional distribution of fluorescent X-ray intensities could be determined for these elements. Furthermore, quantitative determination was possible for P and K by using the fundamental parameter technique. However, the accurate determination of Na and Ca was difficult, because of the low energy of K alpha X-ray of Na, and the interference of K-K beta with Ca-K alpha. The change in elemental concentrations in ischemic tissue, including the decrease in It concentration and increase in Cl concentration, was demonstrated by this method as a two-dimensional contour map. Since it is possible to obtain a pictorial representation of the elemental concentration in tissue sections, this method may be useful to evaluate the ionic changes in injured brain tissue in relation to histological or autoradiographical observations. (C) 2000 Elsevier Science B.V. All lights reserved.