Dynkin's formula under the G-expectation

被引:1
作者
Chen, Xiaoyan [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
D O I
10.1016/j.spl.2009.12.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In 2006, Peng introduced a new kind of nonlinear expectation-G-expectation (see Peng, 2006). And he also established a theory of stochastic calculus under the G-expectation (see Peng, 2006, 2007a, 2008a). In this paper, we will prove a nonlinear Dynkin's formula when the generator of a G-Ito's diffusion is well defined in the framework of the G-expectation. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:519 / 526
页数:8
相关论文
共 9 条
[1]  
[Anonymous], 2008, ARXIV08032656V1MATHP
[2]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[3]  
Denis L, 2008, ARXIV08021240V1MATHP
[4]  
FOLLMER H, 2002, FINANCE STOCHASTICS
[5]  
GIANIN ER, 2002, THESIS ITALY
[6]  
PENG S, 2006, ARXIVMATHPR0601035V2
[7]  
Peng S., 2007, ARXIVMATHPR0702358V1
[8]  
Peng S., 2007, ARXIV07112834V1MATHP
[9]   Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation [J].
Peng, Shige .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (12) :2223-2253