Multi-level Grammar Genetic Programming for Scheduling in Heterogeneous Networks

被引:13
|
作者
Saber, Takfarinas [1 ]
Fagan, David [1 ]
Lynch, David [1 ]
Kucera, Stepan [2 ]
Claussen, Holger [2 ]
O'Neill, Michael [1 ]
机构
[1] Univ Coll Dublin, Sch Business, Nat Comp Res & Applicat Grp, Dublin, Ireland
[2] Bell Labs, Nokia, Dublin, Ireland
来源
GENETIC PROGRAMMING (EUROGP 2018) | 2018年 / 10781卷
基金
爱尔兰科学基金会;
关键词
Telecommunication; Heterogeneous Network Scheduling; Grammar-Guided Genetic Programming; Multi-level grammar;
D O I
10.1007/978-3-319-77553-1_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Co-ordination of Inter-Cell Interference through scheduling enables telecommunication companies to better exploit their Heterogeneous Networks. However, it requires from these entities to implement an effective scheduling algorithm. The state-of-the-art for the scheduling in Heterogeneous Networks is a Grammar-Guided Genetic Programming algorithm which evolves, from a given grammar, an expression that maps to the scheduling of transmissions. We evaluate in our work the possibility of improving the results obtained by the state-of-the-art using a layered grammar approach. We show that starting with a small restricted grammar and introducing the full functionality after 10 generations outperforms the state-of-the-art, even when varying the algorithm used to generate the initial population and the maximum initial tree depth.
引用
收藏
页码:118 / 134
页数:17
相关论文
共 32 条
  • [21] Comparing the expressive power of Strongly-Typed and Grammar-Guided Genetic Programming
    Fonseca, Alcides
    Pocas, Diogo
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 1100 - 1108
  • [22] EvoStencils: a grammar-based genetic programming approach for constructing efficient geometric multigrid methods
    Jonas Schmitt
    Sebastian Kuckuk
    Harald Köstler
    Genetic Programming and Evolvable Machines, 2021, 22 : 511 - 537
  • [23] Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules
    José M. Luna
    José Raúl Romero
    Sebastián Ventura
    Knowledge and Information Systems, 2012, 32 : 53 - 76
  • [24] Comparing Individual Representations in Grammar-Guided Genetic Programming for Glucose Prediction in People with Diabetes
    Ingelse, Leon
    Hidalgo, Jose-Ignacio
    Manuel Colmenar, Jose
    Lourenco, Nuno
    Fonseca, Alcides
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 2013 - 2021
  • [25] Design and behavior study of a grammar-guided genetic programming algorithm for mining association rules
    Luna, Jose M.
    Romero, Jose Raul
    Ventura, Sebastian
    KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 32 (01) : 53 - 76
  • [26] Assessing Similarity-Based Grammar-Guided Genetic Programming Approaches for Program Synthesis
    Tao, Ning
    Ventresque, Anthony
    Saber, Takfarinas
    OPTIMIZATION AND LEARNING, OLA 2022, 2022, 1684 : 240 - 252
  • [27] A comparison of representations in grammar-guided genetic programming in the context of glucose prediction in people with diabetes
    Ingelse, Leon
    Hidalgo, J. Ignacio
    Colmenar, J. Manuel
    Lourenco, Nuno
    Fonseca, Alcides
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2025, 26 (01)
  • [28] EvoStencils: a grammar-based genetic programming approach for constructing efficient geometric multigrid methods
    Schmitt, Jonas
    Kuckuk, Sebastian
    Koestler, Harald
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2021, 22 (04) : 511 - 537
  • [29] Multi-instance genetic programming for web index recommendation
    Zafra, A.
    Romero, C.
    Ventura, S.
    Herrera-Viedma, E.
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (09) : 11470 - 11479
  • [30] Generation of Particle Swarm Optimization algorithms: An experimental study using Grammar-Guided Genetic Programming
    Miranda, Pericles B. C.
    Prudencio, Ricardo B. C.
    APPLIED SOFT COMPUTING, 2017, 60 : 281 - 296