Multi-level Grammar Genetic Programming for Scheduling in Heterogeneous Networks

被引:13
|
作者
Saber, Takfarinas [1 ]
Fagan, David [1 ]
Lynch, David [1 ]
Kucera, Stepan [2 ]
Claussen, Holger [2 ]
O'Neill, Michael [1 ]
机构
[1] Univ Coll Dublin, Sch Business, Nat Comp Res & Applicat Grp, Dublin, Ireland
[2] Bell Labs, Nokia, Dublin, Ireland
来源
GENETIC PROGRAMMING (EUROGP 2018) | 2018年 / 10781卷
基金
爱尔兰科学基金会;
关键词
Telecommunication; Heterogeneous Network Scheduling; Grammar-Guided Genetic Programming; Multi-level grammar;
D O I
10.1007/978-3-319-77553-1_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Co-ordination of Inter-Cell Interference through scheduling enables telecommunication companies to better exploit their Heterogeneous Networks. However, it requires from these entities to implement an effective scheduling algorithm. The state-of-the-art for the scheduling in Heterogeneous Networks is a Grammar-Guided Genetic Programming algorithm which evolves, from a given grammar, an expression that maps to the scheduling of transmissions. We evaluate in our work the possibility of improving the results obtained by the state-of-the-art using a layered grammar approach. We show that starting with a small restricted grammar and introducing the full functionality after 10 generations outperforms the state-of-the-art, even when varying the algorithm used to generate the initial population and the maximum initial tree depth.
引用
收藏
页码:118 / 134
页数:17
相关论文
共 32 条
  • [1] A multi-level grammar approach to grammar-guided genetic programming: the case of scheduling in heterogeneous networks
    Saber, Takfarinas
    Fagan, David
    Lynch, David
    Kucera, Stepan
    Claussen, Holger
    O'Neill, Michael
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2019, 20 (02) : 245 - 283
  • [2] A multi-level grammar approach to grammar-guided genetic programming: the case of scheduling in heterogeneous networks
    Takfarinas Saber
    David Fagan
    David Lynch
    Stepan Kucera
    Holger Claussen
    Michael O’Neill
    Genetic Programming and Evolvable Machines, 2019, 20 : 245 - 283
  • [3] Bankruptcy prediction with neural logic networks by means of grammar-guided genetic programming
    Tsakonas, A
    Dounias, G
    Doumpos, M
    Zopounidis, C
    EXPERT SYSTEMS WITH APPLICATIONS, 2006, 30 (03) : 449 - 461
  • [4] A propositionalization method of multi-relational data based on Grammar-Guided Genetic Programming
    Quintero-Dominguez, Luis A.
    Morell, Carlos
    Ventura, Sebastian
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168
  • [5] Initialization method for grammar-guided genetic programming
    Garcia-Arnau, M.
    Manrique, D.
    Rios, J.
    Rodriguez-Paton, A.
    KNOWLEDGE-BASED SYSTEMS, 2007, 20 (02) : 127 - 133
  • [6] Multi-objective Grammar-guided Genetic Programming with Code Similarity Measurement for Program Synthesis
    Tao, Ning
    Ventresque, Anthony
    Saber, Takfarinas
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [7] Estimation of Distribution Algorithm for Grammar-Guided Genetic Programming
    Criado, Pablo Ramos
    Rolania, D. Barrios
    de la Hoz, David
    Manrique, Daniel
    EVOLUTIONARY COMPUTATION, 2024, 32 (04) : 339 - 370
  • [8] Crossover and mutation operators for grammar-guided genetic programming
    Jorge Couchet
    Daniel Manrique
    Juan Ríos
    Alfonso Rodríguez-Patón
    Soft Computing, 2007, 11 : 943 - 955
  • [9] Crossover and mutation operators for grammar-guided genetic programming
    Couchet, Jorge
    Manrique, Daniel
    Rios, Juan
    Rodriguez-Paton, Alfonso
    SOFT COMPUTING, 2007, 11 (10) : 943 - 955
  • [10] Multi-objective approach based on grammar-guided genetic programming for solving multiple instance problems
    Amelia Zafra
    Sebastián Ventura
    Soft Computing, 2012, 16 : 955 - 977