A degree-increasing [N to N+1] homotopy for Chebyshev and Fourier spectral methods
被引:3
|
作者:
Boyd, John P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Climate & Space Sci & Engn, 2455 Hayward Ave, Ann Arbor, MI 48109 USAUniv Michigan, Dept Climate & Space Sci & Engn, 2455 Hayward Ave, Ann Arbor, MI 48109 USA
Boyd, John P.
[1
]
机构:
[1] Univ Michigan, Dept Climate & Space Sci & Engn, 2455 Hayward Ave, Ann Arbor, MI 48109 USA
Hitherto, as a tool for tracing all branches of nonlinear differential equations, resolution-increasing homotopy methods have been applied only to finite difference discretizations. However, spectral Galerkin algorithms typically match the error of fourth order differences with one-half to one-fifth the number of degrees of freedom N in one dimension, and a factor of eight to a hundred and twenty-five in three dimensions. Let (u) over right arrow (N) be the vector of spectral coefficients and (R) over right arrow (N) the vector of N Galerkin constraints. A common two-part procedure is to first find all roots of (R) over right arrow (N)((u) over right arrow (N)) = (0) over right arrow using resultants, Groebner basis methods or block matrix companion matrices. (These methods are slow and ill-conditioned, practical only for small N.) The second part is to then apply resolution-increasing continuation. Because the number of solutions is an exponential function of N, spectral methods are exponentially superior to finite differences in this context. Unfortunately, (u) over right arrow (N) is all too often outside the domain of convergence of Newton's iteration when N is increased to (N+1). We show that a good option is the artificial parameter homotopy (H) over right arrow((u) over right arrow;tau) = (R) over right arrow (N+1) ((u) over right arrow) - (1 -r)(R) over right arrow (N+1)((u) over right arrow (N)), tau is an element of [0, 1]. Marching in small steps in tau, we proceed smoothly from the N-term to the N + 1-term approximations. (C) 2016 Elsevier Ltd. All rights reserved.
机构:
Univ Michigan, Dept Climate & Space Sci & Engn, Ocean & Space Sci, 2455 Hayward Ave, Ann Arbor, MI 48109 USAUniv Michigan, Dept Climate & Space Sci & Engn, Ocean & Space Sci, 2455 Hayward Ave, Ann Arbor, MI 48109 USA
机构:
Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
Huang, Zhu
Boyd, John P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USAXi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Sheng, Changtao
Shen, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Math, W Lafayette, IN 47907 USANanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Shen, Jie
Tang, Tao
论文数: 0引用数: 0
h-index: 0
机构:
BNU HKBU United Int Coll, Div Sci & Technol, Zhuhai, Guangdong, Peoples R China
Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen, Peoples R ChinaNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Tang, Tao
Wang, Li-Lian
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Wang, Li-Lian
Yuan, Huifang
论文数: 0引用数: 0
h-index: 0
机构:
Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R ChinaNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
机构:
Univ Roma La Sapienza, Dipartimento SBAI, Via Antonio Scarpa 16, I-00161 Rome, ItalyPontificia Univ Catolica Chile, Dept Matemat, Casilla 306,Correo 22, Santiago, Chile
Pistoia, Angela
Wei, Juncheng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, CanadaPontificia Univ Catolica Chile, Dept Matemat, Casilla 306,Correo 22, Santiago, Chile