Effects of Citric Acid Treatment on the Electrochemical Properties of Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material

被引:9
|
作者
Liu, Bailong [1 ,2 ]
Zhang, Zhaohui [1 ,2 ]
Wu, Mei [1 ]
Xu, Shuxiang [1 ]
机构
[1] Xian Univ Architecture & Technol, Sch Met Engn, Xian 710055, Shaanxi, Peoples R China
[2] Xian Univ Architecture & Technol, Shaanxi Prov Met Engn & Technol Res Ctr, Xian 710055, Shaanxi, Peoples R China
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2018年 / 13卷 / 08期
关键词
Surface modification; Li1.2Mn0.54Ni0.13Co0.13O2; Citric Acid; Electrochemical performance; SURFACE MODIFICATION; RATE CAPABILITY; LAYERED OXIDE; PERFORMANCE; ELECTRODES; BATTERIES;
D O I
10.20964/2018.08.50
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The influence of citric acid pre-activation on the electrochemical properties of cathode materials used in lithium batteries is investigated. During the citric acid pre-activation of the surface of coprecipitated Li1.2Mn0.54Ni0.13Co0.13O2, 13.37 wt.% of lithium is removed, mainly owing to the decomposition of the Li2MnO3. Electrochemical property tests indicate that the cycle performance and rate capability of the material are enhanced after citric acid pre-activation. The initial charge-discharge efficiency increases from 66.4% to 79.9%, while the capacity retention after 100 cycles at 0.5C increases from 84.85% to 90.81%. When the current density increases to 5C, the specific discharge capacity of the delithiated material is 108.9 mAh.g(-1), much higher than that (95.10 mAh.g(-1)) before the treatment. This is caused by the formation of a spinel-like structure on the cathode surface, as citric acid removes some of the Li2O in the Li2MnO3 phase. As a result, a channel for Li+ transmission is created and the impedance at the interface between the cathode material and the electrolyte is effectively reduced, facilitating the rapid transport of Li+ through the electrode interface.
引用
收藏
页码:7578 / 7589
页数:12
相关论文
共 50 条
  • [1] Effect of Drying Time on Electrochemical Properties of Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material
    Song, Changkun
    Feng, Wangjun
    Su, Wenxiao
    Chen, Linjing
    Li, Miaomiao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (03): : 2372 - 2382
  • [2] Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO
    Kong, Ji-Zhou
    Zhai, Hai-Fa
    Qian, Xu
    Wang, Mei
    Wang, Qian-Zhi
    Li, Ai-Dong
    Li, Hui
    Zhou, Fei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 694 : 848 - 856
  • [3] Effect of Na2S treatment on the structural and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material
    Li, Yanxiu
    Li, Shaomin
    Zhong, Benhe
    Guo, Xiaodong
    Wu, Zhenguo
    Xiang, Wei
    Liu, Hao
    Liu, Guobiao
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (02) : 547 - 554
  • [4] Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material with bamboo essential oil
    Song, Changkun
    Feng, Wangjun
    Wang, Xuan
    Shi, Zhaojiao
    IONICS, 2020, 26 (02) : 661 - 672
  • [5] Exploring the Effect of a MnO2 Coating on the Electrochemical Performance of a Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material
    Li, Zhong
    Yang, Peiyue
    Zheng, Zhongxiang
    Pan, Qiyun
    Liu, Yisi
    Li, Yao
    Xuan, Jinnan
    MICROMACHINES, 2021, 12 (11)
  • [6] The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material
    Zheng, Jun
    Deng, Shengnan
    Shi, Zhicong
    Xu, Hongjie
    Xu, Hui
    Deng, Yuanfu
    Zhang, Zachary
    Chen, Guohua
    JOURNAL OF POWER SOURCES, 2013, 221 : 108 - 113
  • [7] Improved electrochemical properties of YF3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode for Li-ion batteries
    Liu, Bailong
    Zhang, Zhaohui
    Wan, Jiangkai
    Liu, Shifeng
    IONICS, 2017, 23 (06) : 1365 - 1374
  • [8] Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 hollow spherical as cathode material for Li-ion battery
    Zhang, Yu
    Zhu, Tianjiao
    Lin, Liu
    Yuan, Mengwei
    Li, Huifeng
    Sun, Genban
    Ma, Shulan
    JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (11)
  • [9] Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery
    Du, ChenQiang
    Zhang, Fei
    Ma, ChenXiang
    Wu, JunWei
    Tang, ZhiYuan
    Zhang, XinHe
    Qu, Deyang
    IONICS, 2016, 22 (02) : 209 - 218
  • [10] The effect of composite organic acid (citric acid & tartaric acid) on microstructure and, electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich layered oxides
    Zheng, Fenghua
    Ou, Xing
    Pan, Qichang
    Xiong, Xunhui
    Yang, Chenghao
    Liu, Meilin
    JOURNAL OF POWER SOURCES, 2017, 346 : 31 - 39