Quantum gravity as a quantum field theory of simplicial geometry

被引:10
作者
Oriti, Daniele [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
来源
QUANTUM GRAVITY: MATHEMATICAL MODELS AND EXPERIMENTAL BOUNDS | 2007年
关键词
group field theory; spin networks; spin foams; canonical quantum gravity; third quantization; sirnplicial geometries;
D O I
10.1007/978-3-7643-7978-0_6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This is an introduction to the group field theory approach to quantum gravity, with emphasis on motivations and basic formalism, more than on recent results; we elaborate on the various ingredients, both conceptual and formal, of the approach, giving some examples, and we discuss some perspectives of future developments.
引用
收藏
页码:101 / 126
页数:26
相关论文
共 39 条
[11]  
DOWKER F, GRQC0508109
[12]   A spin-statistics theorem for certain topological geons [J].
Dowker, HF ;
Sorkin, RD .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (05) :1153-1167
[13]   Ponzano-Regge model revisited: I. Gauge fixing, observables and interacting spinning particles [J].
Freidel, L ;
Louapre, D .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (24) :5685-5726
[14]   Nonperturbative summation over 3D discrete topologies [J].
Freidel, L ;
Louapre, D .
PHYSICAL REVIEW D, 2003, 68 (10)
[15]   Diffeomorphisms and spin foam models [J].
Freidel, L ;
Louapre, D .
NUCLEAR PHYSICS B, 2003, 662 (1-2) :279-298
[16]  
FREIDEL L, GRQC0506067
[17]  
FREIDEL L, HEPTH0505016
[18]   BABY UNIVERSES, 3RD QUANTIZATION AND THE COSMOLOGICAL CONSTANT [J].
GIDDINGS, SB ;
STROMINGER, A .
NUCLEAR PHYSICS B, 1989, 321 (02) :481-508
[19]   SIMPLICIAL GRAVITY COUPLED TO SCALAR MATTER [J].
HAMBER, HW ;
WILLIAMS, RM .
NUCLEAR PHYSICS B, 1994, 415 (02) :463-496
[20]  
HARTLE J, 1992, LES HOUCHES SUM SCH, P285