A method of distinguishing between the characteristic phases of behavior in complex networks in the intermittent generalized synchronization regime

被引:2
作者
Koronovskii, A. A. [1 ]
Moskalenko, O. I. [1 ]
Pivovarov, A. A. [1 ]
Hramov, A. E. [1 ,2 ]
机构
[1] Chernyshevsky Saratov State Univ, Saratov 410012, Russia
[2] Yuri Gagarin State Tech Univ Saratov, Saratov 410054, Russia
基金
俄罗斯科学基金会;
关键词
CHAOS; WEAK;
D O I
10.1134/S1063785017040113
中图分类号
O59 [应用物理学];
学科分类号
摘要
A method of identification of the phases of synchronous and asynchronous intervals in the time realizations of interacting chaotic systems representing elements of a network with complex coupling topology in the state of transition to the generalized synchronization regime is proposed. The method allows determining the duration of the phases of synchronous and asynchronous dynamics, which potentially allows analyzing the statistical characteristics of the intermittent behavior of the discussed systems.
引用
收藏
页码:328 / 330
页数:3
相关论文
共 20 条
  • [1] Generalized synchronization of chaos: The auxiliary system approach
    Abarbanel, HDI
    Rulkov, NF
    Sushchik, MM
    [J]. PHYSICAL REVIEW E, 1996, 53 (05) : 4528 - 4535
  • [2] [Anonymous], TECH PHYS LETT
  • [3] [Anonymous], LORDER DANS LE HAOS
  • [4] Characterization of intermittent lag synchronization
    Boccaletti, S
    Valladares, DL
    [J]. PHYSICAL REVIEW E, 2000, 62 (05): : 7497 - 7500
  • [5] Experimental characterization of the transition to phase synchronization of chaotic CO2 laser systems -: art. no. 194101
    Boccaletti, S
    Allaria, E
    Meucci, R
    Arecchi, FT
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (19)
  • [6] Ditto W, 2002, NATURE, V415, P736, DOI 10.1038/415736b
  • [7] Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators
    Hramov, AE
    Koronovskii, AA
    [J]. EUROPHYSICS LETTERS, 2005, 70 (02): : 169 - 175
  • [8] Paths to globally generalized synchronization in scale-free networks
    Hung, Yao-Chen
    Huang, Yu-Ting
    Ho, Ming-Chung
    Hu, Chin-Kun
    [J]. PHYSICAL REVIEW E, 2008, 77 (01):
  • [9] Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems
    Kocarev, L
    Parlitz, U
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (11) : 1816 - 1819
  • [10] Generalized synchronization in discrete maps. New point of view on weak and strong synchronization
    Koronovskii, Alexey A.
    Moskalenko, Olga I.
    Shurygina, Svetlana A.
    Hramov, Alexander E.
    [J]. CHAOS SOLITONS & FRACTALS, 2013, 46 : 12 - 18