The effect of grain size on electrical transport and magnetic properties of La0.9Te0.1MnO3

被引:42
作者
Yang, J
Zhao, BC
Zhang, RL
Ma, YQ
Sheng, ZG
Song, WH
Sun, YP [1 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210008, Peoples R China
关键词
colossal magnetoresistance; chemical synthesis; electrical transport;
D O I
10.1016/j.ssc.2004.07.029
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The effect of grain size on structural, magnetic and transport properties in electron-doped manganites La0.9Te0.1MnO3 has been investigated. All samples show a rhombohedral structure with the space group R (3) over barC at room temperature. The Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase of grain size. All samples undergo paramagnetic (PM)-ferromagnetic (FM) phase transitions and the interesting phenomenon that both magnetization and the Curie temperature T-C decrease with increasing grain size is observed, which is suggested to mainly originate from the increase of the Mn-O bond length d(Mn-O). Additionally, rho obviously increases with decreasing grain size due to the increase of both the height and width of tunneling barriers with decreasing grain size. The results indicate that both the intrinsic colossal magnetoresistance and the extrinsic interfacial magnetoresistance can be effectively tuned in La0.9Te0.1MnO3 by changing grain size. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 50 条
  • [31] Structural, magnetic and transport properties of La0.70Sr0.21K0.09MnO3
    Tasarkuyu, E.
    Irmak, A. E.
    Coskun, A.
    Akturk, S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 588 : 422 - 427
  • [32] Structural, transport, magnetic, and dielectric properties of La1-x Te x MnO3 (x=0.10 and 0.15)
    Bhat, Irshad
    Husain, Shahid
    Khan, Wasi
    Patil, S. I.
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (08) : 3272 - 3282
  • [33] Influence of the shapes on the magnetic and electrical transport properties of La2/3Ca1/3MnO3 nanoparticles
    Riano-Rojas, J. C.
    Restrepo-Parra, E.
    Orozco-Hernandez, G.
    Urrea-Serna, J. A.
    Restrepo, J.
    JOURNAL OF MATERIALS SCIENCE, 2010, 45 (23) : 6455 - 6460
  • [34] Effect of Nd doping on the electrical transport properties of La0.67Ca0.33MnO3 thin films
    Yan, Fuxue
    Wang, Tian
    Jiao, Tejing
    Jiao, Zhichao
    He, Xiao
    Bai, Jiani
    Zhao, Gaoyang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (15) : 12310 - 12320
  • [35] Electronic structures and Hall effect in low-doped La0.9Hf0.1MnO3 epitaxial films
    Wang, L.
    Gao, J.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
  • [36] Influence of la doping on the structure, magnetic and electrical transport properties of Pr0,75Na0.25MnO3
    Zhang Xinghua
    Li Zhiqing
    Jiang Enyong
    ACTA METALLURGICA SINICA, 2006, 42 (09) : 974 - 978
  • [37] Electrical-transport, Magnetoresistance and Magnetic Properties of La0.7Ca0.3MnO3 and La0.7Ca0.24Sr0.06MnO3 Single Crystals
    Tank, Tejas M.
    Bodhaye, Ashish
    Mukovskii, Ya M.
    Sanyal, S. P.
    PROCEEDINGS OF THE 59TH DAE SOLID STATE PHYSICS SYMPOSIUM 2014 (SOLID STATE PHYSICS), 2015, 1665
  • [38] Influence of grain size on magnetoresistance properties of bulk La0.67Ca0.33MnO3-δ
    Hossain, AKMA
    Cohen, LF
    Damay, F
    Berenov, A
    MacManus-Driscoll, J
    Alford, NM
    Mathur, ND
    Blamire, M
    Evetts, JE
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 192 (02) : 263 - 270
  • [39] Effect of heterovalent substitution at Mn site on the magnetic and transport properties of La0.67Sr0.33MnO3
    Priolkar, K. R.
    Rawat, R.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (3-4) : 325 - 330
  • [40] Electrical and Thermal Transport Properties of Transition Metal Substituted in Electron-Doped La0.9Te0.1Mn1-x M x O3 Compounds (M=Cr and Al)
    Zheng, G. H.
    Dai, Z. X.
    Dong, Y. Q.
    Zhang, Y. Y.
    Ma, Y. Q.
    Zhang, H.
    Li, G.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2011, 165 (1-2) : 43 - 54