Charge-Based Separation of Proteins Using Polyelectrolyte Complexes as Models for Membraneless Organelles

被引:42
作者
van Lente, Jere J. [1 ,2 ]
Claessens, Mireille M. A. E. [1 ]
Lindhoud, Saskia [1 ]
机构
[1] Univ Twente, Dept Nanobiophys, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands
[2] Univ Twente, Membrane Sci & Technol Cluster, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands
关键词
INTRINSICALLY DISORDERED PROTEINS; PHASE-SEPARATION; PARTITION-COEFFICIENTS; SUPERCHARGED PROTEINS; GLOBULAR-PROTEINS; INTRACELLULAR PH; SMALL MOLECULES; COACERVATION; BEHAVIOR; RELEASE;
D O I
10.1021/acs.biomac.9b00701
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Membraneless organelles are liquid compartments within cells with different solvent properties than the surrounding environment. This difference in solvent properties is thought to result in function-related selective partitioning of proteins. Proteins have also been shown to accumulate in polyelectrolyte complexes, but whether the uptake in these complexes is selective has not been ascertained yet. Here, we show the selective partitioning of two structurally similar but oppositely charged proteins into polyelectrolyte complexes. We demonstrate that these proteins can be separated from a mixture by altering the polyelectrolyte complex composition and released from the complex by lowering the pH. Combined, we demonstrate that polyelectrolyte complexes can separate proteins from a mixture based on protein charge. Besides providing deeper insight into the selective partitioning in membraneless organelles, potential applications for selective biomolecule partitioning in polyelectrolyte complexes include drug delivery or extraction processes.
引用
收藏
页码:3696 / 3703
页数:8
相关论文
共 67 条
[1]   Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila [J].
Aguilera-Gomez, Angelica ;
Rabouille, Catherine .
DEVELOPMENTAL BIOLOGY, 2017, 428 (02) :310-317
[2]   Analysis of electric moments of RNA-binding proteins: implications for mechanism and prediction [J].
Ahmad, Shandar ;
Sarai, Akinori .
BMC STRUCTURAL BIOLOGY, 2011, 11
[3]   Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau [J].
Ambadipudi, Susmitha ;
Biernat, Jacek ;
Riedel, Dietmar ;
Mandelkow, Eckhard ;
Zweckstetter, Markus .
NATURE COMMUNICATIONS, 2017, 8
[4]   Biomolecular condensates: organizers of cellular biochemistry [J].
Banani, Salman F. ;
Lee, Hyun O. ;
Hyman, Anthony A. ;
Rosen, Michael K. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2017, 18 (05) :285-298
[5]   Compositional Control of Phase-Separated Cellular Bodies [J].
Banani, Salman F. ;
Rice, Allyson M. ;
Peeples, William B. ;
Lin, Yuan ;
Jain, Saumya ;
Parker, Roy ;
Rosen, Michael K. .
CELL, 2016, 166 (03) :651-663
[6]   Calculating Partition Coefficients of Small Molecules in Octanol/Water and Cyclohexane/Water [J].
Bannan, Caitlin C. ;
Calabro, Gaetano ;
Kyu, Daisy Y. ;
Mobley, David L. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (08) :4015-4024
[7]   Automated Parametrization of the Coarse-Grained Martini Force Field for Small Organic Molecules [J].
Bereau, Tristan ;
Kremer, Kurt .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (06) :2783-2791
[8]   Protein Encapsulation via Polypeptide Complex Coacervation [J].
Black, Katie A. ;
Priftis, Dimitrios ;
Perry, Sarah L. ;
Yip, Jeremy ;
Byun, William Y. ;
Tirrell, Matthew .
ACS MACRO LETTERS, 2014, 3 (10) :1088-1091
[9]   Protein Phase Separation: A New Phase in Cell Biology [J].
Boeynaems, Steven ;
Alberti, Simon ;
Fawzi, Nicolas L. ;
Mittag, Tanja ;
Polymenidou, Magdalini ;
Rousseau, Frederic ;
Schymkowitz, Joost ;
Shorter, James ;
Wolozin, Benjamin ;
Van den Bosch, Ludo ;
Tompa, Peter ;
Fuxreiter, Monika .
TRENDS IN CELL BIOLOGY, 2018, 28 (06) :420-435
[10]   Phase transitions and size scaling of membrane-less organelles [J].
Brangwynne, Clifford P. .
JOURNAL OF CELL BIOLOGY, 2013, 203 (06) :875-881