Cohomology and deformations of n-Lie algebra morphisms

被引:14
作者
Arfa, Anja [1 ]
Ben Fraj, Nizar [2 ]
Makhlouf, Abdenacer [3 ]
机构
[1] Univ Sfax, Fac Sci, Sfax, Tunisia
[2] Univ Carthage, Inst Preparatoire Etud Ingenieur Nabeul, Tunis, Tunisia
[3] Univ Haute Alsace, IRIMAS Dept Math, Mulhouse, France
关键词
Cohomology; n-Lie algebra; Representation; Morphisms; Deformation;
D O I
10.1016/j.geomphys.2018.05.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of n-Lie algebras which are natural generalization of Lie algebras is motivated by Nambu Mechanics and recent developments in String Theory and M-branes. The purpose of this paper is to define cohomology complexes and study deformation theory of n-Lie algebra morphisms. We discuss infinitesimal deformations, equivalent deformations and obstructions. Moreover, we provide various examples. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:64 / 74
页数:11
相关论文
共 19 条
  • [1] Structure and Cohomology of 3-Lie Algebras Induced by Lie Algebras
    Arnlind, Joakim
    Kitouni, Abdennour
    Makhlouf, Abdenacer
    Silvestrov, Sergei
    [J]. ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS (AGMP), 2014, 85 : 123 - 144
  • [2] Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras
    Arnlind, Joakim
    Makhlouf, Abdenacer
    Silvestrov, Sergei
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (12)
  • [3] Azcarraga J.A., 2010, J PHYS A, V43, P103
  • [4] On classification of n-Lie algebras
    Bai, Ruipu
    Song, Guojie
    Zhang, Yaozhong
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (04) : 581 - 606
  • [5] Leibniz and Lie algebra structures for Nambu algebra
    Daletskii, YL
    Takhtajan, LA
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1997, 39 (02) : 127 - 141
  • [6] FILIPPOV VT, 1985, SIBERIAN MATH J+, V26, P879
  • [7] A new cohomology theory associated to deformations of lie algebra morphisms
    Frégier, Y
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2004, 70 (02) : 97 - 107
  • [8] Fregier Y., 2009, NEW YORK J MATH, V15, P353
  • [9] Simultaneous deformations of algebras and morphisms via derived brackets
    Fregier, Yael
    Zambon, Marco
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (12) : 5344 - 5362
  • [10] Some remarks concerning Nambu mechanics
    Gautheron, P
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1996, 37 (01) : 103 - 116