High-Throughput Microfluidic Sorting of Live Magnetotactic Bacteria

被引:17
|
作者
Tay, Andy [1 ,2 ]
Pfeiffer, Daniel [3 ]
Rowe, Kathryn [4 ]
Tannenbaum, Aaron [4 ]
Popp, Felix [3 ]
Strangeway, Robert [4 ]
Schueler, Dirk [3 ]
Di Carlo, Dino [1 ,5 ,6 ,7 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[2] Natl Univ Singapore, Dept Biomed Engn, Singapore, Singapore
[3] Univ Bayreuth, Dept Microbiol, Bayreuth, Germany
[4] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA
[5] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90024 USA
[7] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
magnetotactic bacteria; microfluidic; enrichment; magnetic nanoparticles; MAGNETOSOME EXPRESSION; MAGNETOSPIRILLUM; NANOPARTICLES; BIOSYNTHESIS; TECHNOLOGIES; SEPARATION; SYSTEM; CELLS;
D O I
10.1128/AEM.01308-18
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Magnetic nanoparticles (MNPs) are useful for many biomedical applications, but it is challenging to synthetically produce them in large numbers with uniform properties and surface functionalization. Magnetotactic bacteria (MTB) produce magnetosomes with homogenous sizes, shapes, and magnetic properties. Consequently, there is interest in using MTB as biological factories for MNP production. Nonetheless, MTB can only be grown to low yields, and wild-type strains produce low numbers of MNPs/bacterium. There are also limited technologies to facilitate the selection of MTB with different magnetic contents, such as MTB with compromised and enhanced biomineralization ability. Here, we describe a magnetic microfluidic platform combined with transient cold/alkaline treatment to temporarily reduce the rapid flagellar motion of MTB without compromising their long-term proliferation and biomineralization ability for separating MTB on the basis of their magnetic contents. This strategy enables live MTB to be enriched, which, to the best of our knowledge, has not been achieved with another previously described magnetic microfluidic device that makes use of ferrofluid and heat. Our device also facilitates the high-throughput (25,000 cells/min) separation of wild-type Magnetospirillum gryphiswaldense (MSR-1) from nonmagnetic Delta mamAB MSR-1 mutants with a sensitivity of up to 80% and isolation purity of up to 95%, as confirmed with a gold-standard fluorescent-activated cell sorter (FACS) technique. This offers a 25-fold higher throughput than other previously described magnetic microfluidic platforms (1,000 cells/min). The device can also be used to isolate Magnetospirillum magneticurn (AMB-1) mutants with different ranges of magnetosome numbers with efficiencies close to theoretical estimates. We believe this technology will facilitate the magnetic characterization of genetically engineered MTB for a variety of applications, including using MTB for large-scale, controlled MNP production. IMPORTANCE Our magnetic microfluidic technology can greatly facilitate biological applications with magnetotactic bacteria, from selection and screening to analysis. This technology will be of interest to microbiologists, chemists, and bioengineers who are interested in the biomineralization and selection of magnetotactic bacteria (MTB) for applications such as directed evolution and magnetogenetics.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Transcription with a novel high-throughput microfluidic assay
    Kim, Soohong
    Streets, Aaron M.
    Lin, Ron R.
    Quake, Stephen R.
    Weiss, Shimon
    Majumdar, Devdoot S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [32] Multispot Live-Image Autofocusing for High-Throughput Microscopy of Fluorescently Stained Bacteria
    Zeder, M.
    Pernthaler, J.
    CYTOMETRY PART A, 2009, 75A (09) : 781 - 788
  • [33] Integration column: Microfluidic high-throughput screening
    Maerkl, Sebastian J.
    INTEGRATIVE BIOLOGY, 2009, 1 (01) : 19 - 29
  • [34] Microfluidic devices for high-throughput proteome analyses
    Chao, Tzu-Chiao
    Hansmeier, Nicole
    PROTEOMICS, 2013, 13 (3-4) : 467 - 479
  • [35] Microfluidic systems for high-throughput and combinatorial chemistry
    Cullen, CJ
    Wootton, RCR
    de Mello, AJ
    CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT, 2004, 7 (06) : 798 - 806
  • [36] Microfluidic hydrodynamic focusing for high-throughput applications
    Zhao, Jingjing
    You, Zheng
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2015, 25 (12)
  • [37] High-throughput microfluidic imaging flow cytometry
    Stavrakis, Stavros
    Holzner, Gregor
    Choo, Jaebum
    DeMello, Andrew
    CURRENT OPINION IN BIOTECHNOLOGY, 2019, 55 : 36 - 43
  • [38] Development of high-throughput compartmental microfluidic devices for multiplexed single-cell sorting, manipulation and analysis
    Sathuluri, Ramachandra Rao
    Kitamura, Masahito
    Yamamura, Shohei
    Tamiya, Eiichi
    2006 IEEE SENSORS, VOLS 1-3, 2006, : 642 - +
  • [39] Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution
    Rohde, Christopher B.
    Zeng, Fei
    Gonzalez-Rubio, Ricardo
    Angel, Matthew
    Yanik, Mehmet Fatih
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (35) : 13891 - 13895
  • [40] High-throughput Quantification of Cheese Bacteria
    Dreier, Matthias
    Wechsler, Daniel
    CHIMIA, 2021, 75 (06) : 550 - 550