Superparamagnetic Iron Oxide Nanoparticles-Complexed Cationic Amylose for In Vivo Magnetic Resonance Imaging Tracking of Transplanted Stem Cells in Stroke

被引:26
作者
Lin, Bing-Ling [1 ]
Zhang, Jun-Zhao [2 ]
Lu, Lie-Jing [1 ]
Mao, Jia-Ji [1 ]
Cao, Ming-Hui [1 ]
Mao, Xu-Hong [3 ]
Zhang, Fang [1 ]
Duan, Xiao-Hui [1 ]
Zheng, Chu-Shan [1 ]
Zhang, Li-Ming [2 ,3 ,4 ]
Shen, Jun [1 ]
机构
[1] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Dept Radiol, Guangzhou 510120, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem, Dept Polymer & Mat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab High Performance Polymer B, Key Lab Designed Synth & Applicat Polymer Mat, Key Lab Polymer Composite & Funct Mat,Minist Educ, Guangzhou 510275, Guangdong, Peoples R China
来源
NANOMATERIALS | 2017年 / 7卷 / 05期
关键词
superparamagnetic iron oxide nanoparticles; magnetic resonance imaging; amylose ischemic stroke; mesenchymal stem cells; green fluorescence protein; biodegradation; MARROW STROMAL CELLS; CEREBRAL-ISCHEMIA; POLYSACCHARIDES; DELIVERY; CYTOTOXICITY; THERAPIES; PROGRESS; STARCH; VITRO;
D O I
10.3390/nano7050107
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cell-based therapy with mesenchymal stem cells (MSCs) is a promising strategy for acute ischemic stroke. In vivo tracking of therapeutic stem cells with magnetic resonance imaging (MRI) is imperative for better understanding cellular survival and migrational dynamics over time. In this study, we develop a novel biocompatible nanocomplex (ASP-SPIONs) based on cationic amylose, by introducing spermine and the image label, ultrasmall superparamagnetic iron oxide nanoparticles (SPIONs), to label MSCs. The capacity, efficiency, and cytotoxicity of the nanocomplex in transferring SPIONs into green fluorescence protein-modified MSCs were tested; and the performance of in vivo MRI tracking of the transplanted cells in acute ischemic stroke was determined. The results demonstrated that the new class of SPIONs-complexed nanoparticles based on biodegradable amylose can serve as a highly effective and safe carrier to transfer magnetic label into stem cells. A reliable tracking of transplanted stem cells in stroke was achieved by MRI up to 6 weeks, with the desirable therapeutic benefit of stem cells on stroke retained. With the advantages of a relatively low SPIONs concentration and a short labeling period, the biocompatible complex of cationic amylose with SPIONs is highly translatable for clinical application. It holds great promise in efficient, rapid, and safe labeling of stem cells for subsequent cellular MRI tracking in regenerative medicine.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging
    Chee, Heng Li
    Gan, Ching Ruey R.
    Ng, Michael
    Low, Lionel
    Fernig, David G.
    Bhakoo, Kishore K.
    Paramelle, David
    ACS NANO, 2018, 12 (07) : 6480 - 6491
  • [42] Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking
    Andreas, Kristin
    Georgieva, Radostina
    Ladwig, Mechthild
    Mueller, Susanne
    Notter, Michael
    Sittinger, Michael
    Ringe, Jochen
    BIOMATERIALS, 2012, 33 (18) : 4515 - 4525
  • [43] In Vivo Dual-Modality Terahertz/Magnetic Resonance Imaging Using Superparamagnetic Iron Oxide Nanoparticles as a Dual Contrast Agent
    Park, Jae Yeon
    Choi, Hyuck Jae
    Nam, Gi-Eun
    Cho, Kyoung-Sik
    Son, Joo-Hiuk
    IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2012, 2 (01) : 93 - 98
  • [44] Biocompatible Low-Retention Superparamagnetic Iron Oxide Nanoclusters as Contrast Agents for Magnetic Resonance Imaging of Liver Tumor
    Wei, Yushuang
    Liao, Rufang
    Liu, Haijuan
    Li, Huan
    Xu, Haibo
    Zhou, Qibing
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2015, 11 (05) : 854 - 864
  • [45] Magnetic Resonance Imaging of Transplanted Porcine Neonatal Pancreatic Cell Clusters Labeled with Chitosan-Coated Superparamagnetic Iron Oxide Nanoparticles in Mice
    Juang, Jyuhn-Huarng
    Wang, Jiun-Jie
    Shen, Chia-Rui
    Chen, Chen-Yi
    Kao, Chen-Wei
    Chen, Chen-Ling
    Lin, Sung-Han
    Wu, Shu-Ting
    Li, Wan-Chun
    Tsai, Zei-Tsan
    POLYMERS, 2021, 13 (08)
  • [46] In vivo Tracking of Mesenchymal Stem Cells Labeled with a Novel Chitosan-coated Superparamagnetic Iron Oxide Nanoparticles using 3.0T MRI
    Reddy, Alavala Matta
    Kwak, Byung Kook
    Shim, Hyung Jin
    Ahn, Chiyoung
    Lee, Hyo Sook
    Suh, Yong Jae
    Park, Eon Sub
    JOURNAL OF KOREAN MEDICAL SCIENCE, 2010, 25 (02) : 211 - 219
  • [47] Clusters of Iron Oxide Nanoparticles for Efficient Magnetic Resonance Imaging
    Lai, Ping-Shan
    Lai, Syu-Ming
    NANOTECHNOLOGY 2012, VOL 3: BIO SENSORS, INSTRUMENTS, MEDICAL, ENVIRONMENT AND ENERGY, 2012, : 79 - 82
  • [48] Superparamagnetic iron oxide nanoparticles assembled magnetic nanobubbles and their application for neural stem cells labeling
    Li, Jing
    Feng, Zhenqiang
    Gu, Ning
    Yang, Fang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 63 : 124 - 132
  • [49] Magnetic resonance imaging of ultrasmall superparamagnetic iron oxide-labeled exosomes from stem cells: a new method to obtain labeled exosomes
    Busato, Alice
    Bonafede, Roberta
    Bontempi, Pietro
    Scambi, Ilaria
    Schiaffino, Lorenzo
    Benati, Donatella
    Malatesta, Manuela
    Sbarbati, Andrea
    Marzola, Pasquina
    Mariotti, Raffaella
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2016, 11 : 2481 - 2490
  • [50] Focused Magnetic Stem Cell Targeting to the Retina Using Superparamagnetic Iron Oxide Nanoparticles
    Yanai, Anat
    Haefeli, Urs O.
    Metcalfe, Andrew L.
    Soema, Peter
    Addo, Lois
    Gregory-Evans, Cheryl Y.
    Po, Kelvin
    Shan, Xianghong
    Moritz, Orson L.
    Gregory-Evans, Kevin
    CELL TRANSPLANTATION, 2012, 21 (06) : 1137 - 1148