Superparamagnetic Iron Oxide Nanoparticles-Complexed Cationic Amylose for In Vivo Magnetic Resonance Imaging Tracking of Transplanted Stem Cells in Stroke

被引:26
|
作者
Lin, Bing-Ling [1 ]
Zhang, Jun-Zhao [2 ]
Lu, Lie-Jing [1 ]
Mao, Jia-Ji [1 ]
Cao, Ming-Hui [1 ]
Mao, Xu-Hong [3 ]
Zhang, Fang [1 ]
Duan, Xiao-Hui [1 ]
Zheng, Chu-Shan [1 ]
Zhang, Li-Ming [2 ,3 ,4 ]
Shen, Jun [1 ]
机构
[1] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Dept Radiol, Guangzhou 510120, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem, Dept Polymer & Mat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab High Performance Polymer B, Key Lab Designed Synth & Applicat Polymer Mat, Key Lab Polymer Composite & Funct Mat,Minist Educ, Guangzhou 510275, Guangdong, Peoples R China
来源
NANOMATERIALS | 2017年 / 7卷 / 05期
关键词
superparamagnetic iron oxide nanoparticles; magnetic resonance imaging; amylose ischemic stroke; mesenchymal stem cells; green fluorescence protein; biodegradation; MARROW STROMAL CELLS; CEREBRAL-ISCHEMIA; POLYSACCHARIDES; DELIVERY; CYTOTOXICITY; THERAPIES; PROGRESS; STARCH; VITRO;
D O I
10.3390/nano7050107
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cell-based therapy with mesenchymal stem cells (MSCs) is a promising strategy for acute ischemic stroke. In vivo tracking of therapeutic stem cells with magnetic resonance imaging (MRI) is imperative for better understanding cellular survival and migrational dynamics over time. In this study, we develop a novel biocompatible nanocomplex (ASP-SPIONs) based on cationic amylose, by introducing spermine and the image label, ultrasmall superparamagnetic iron oxide nanoparticles (SPIONs), to label MSCs. The capacity, efficiency, and cytotoxicity of the nanocomplex in transferring SPIONs into green fluorescence protein-modified MSCs were tested; and the performance of in vivo MRI tracking of the transplanted cells in acute ischemic stroke was determined. The results demonstrated that the new class of SPIONs-complexed nanoparticles based on biodegradable amylose can serve as a highly effective and safe carrier to transfer magnetic label into stem cells. A reliable tracking of transplanted stem cells in stroke was achieved by MRI up to 6 weeks, with the desirable therapeutic benefit of stem cells on stroke retained. With the advantages of a relatively low SPIONs concentration and a short labeling period, the biocompatible complex of cationic amylose with SPIONs is highly translatable for clinical application. It holds great promise in efficient, rapid, and safe labeling of stem cells for subsequent cellular MRI tracking in regenerative medicine.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Superparamagnetic Iron Oxide-Loaded Cationic Polymersomes for Cellular MR Imaging of Therapeutic Stem Cells in Stroke
    Duan, Xiaohui
    Wang, Yong
    Zhang, Fang
    Lu, Liejing
    Cao, Minghui
    Lin, Bingling
    Zhang, Xiang
    Mao, Jiaji
    Shuai, Xintao
    Shen, Jun
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2016, 12 (12) : 2112 - 2124
  • [2] Magnetic resonance monitoring of superparamagnetic iron oxide (SPIO)-labeled stem cells transplanted into the inner ear
    Watada, Yukiko
    Yamashita, Daisuke
    Toyoda, Masashi
    Tsuchiya, Kohei
    Hida, Naoko
    Tanimoto, Akihiro
    Ogawa, Kaoru
    Kanzaki, Sho
    Umezawa, Akihiro
    NEUROSCIENCE RESEARCH, 2015, 95 : 21 - 26
  • [3] (Carboxymethyl)chitosan-Modified Superparamagnetic Iron Oxide Nanoparticles for Magnetic Resonance Imaging of Stem Cells
    Shi, Zhilong
    Neoh, K. G.
    Kang, E. T.
    Shuter, Borys
    Wang, Shih-Chang
    Poh, Chyekhoon
    Wang, W.
    ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (02) : 328 - 335
  • [4] In vivo magnetic resonance imaging tracking of C6 glioma cells labeled with superparamagnetic iron oxide nanoparticles
    Mamani, Javier Bustamante
    Malheiros, Jackeline Moraes
    Cardoso, Ellison Fernando
    Tannus, Alberto
    Silveira, Paulo Henrique
    Gamarra, Lionel Fernel
    EINSTEIN-SAO PAULO, 2012, 10 (02): : 164 - 170
  • [5] Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging
    Huang, Hai
    Xie, Qiuping
    Kang, Muxing
    Zhang, Bo
    Zhang, Hui
    Chen, Jin
    Zhai, Chuanxin
    Yang, Deren
    Jiang, Biao
    Wu, Yulian
    NANOTECHNOLOGY, 2009, 20 (36)
  • [6] Stem Cell Labeling with Superparamagnetic Iron Oxide Nanoparticles Using Focused Ultrasound and Magnetic Resonance Imaging Tracking
    Le, Hulong
    Nan, Xiang
    Wang, Zhiyong
    Gao, Lin
    Xie, Lisi
    Zou, Chao
    Wan, Qian
    Pan, Di
    Beauchamp, Norman
    Yang, Xiaoming
    Matula, Thomas
    Qiu, Bensheng
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (04) : 2605 - 2612
  • [7] Superparamagnetic iron oxide nanoparticles for direct labeling of stem cells and in vivo MRI tracking
    Kim, Saejeong J.
    Lewis, Bobbi
    Steiner, Mark-Steven
    Bissa, Ursula V.
    Dose, Christian
    Frank, Joseph A.
    CONTRAST MEDIA & MOLECULAR IMAGING, 2016, 11 (01) : 55 - 64
  • [8] Targeted Superparamagnetic Iron Oxide Nanoparticles for In Vivo Magnetic Resonance Imaging of T-Cells in Rheumatoid Arthritis
    Chen, Chih-Lung
    Siow, Tiing Yee
    Chou, Cheng-Hung
    Lin, Chen-Hsuan
    Lin, Ming-Huang
    Chen, Yung-Chu
    Hsieh, Wen-Yuan
    Wang, Shian-Jy
    Chang, Chen
    MOLECULAR IMAGING AND BIOLOGY, 2017, 19 (02) : 233 - 244
  • [9] Biological activity and magnetic resonance imaging of superparamagnetic iron oxide nanoparticles-labeled adipose-derived stem cells
    Jingjing Fan
    Yanbin Tan
    Liyong Jie
    Xinying Wu
    Risheng Yu
    Minming Zhang
    Stem Cell Research & Therapy, 4
  • [10] Biological activity and magnetic resonance imaging of superparamagnetic iron oxide nanoparticles-labeled adipose-derived stem cells
    Fan, Jingjing
    Tan, Yanbin
    Jie, Liyong
    Wu, Xinying
    Yu, Risheng
    Zhang, Minming
    STEM CELL RESEARCH & THERAPY, 2013, 4