M1 macrophages impair tight junctions between endothelial cells after spinal cord injury

被引:20
作者
Luo, Yang [1 ]
Yao, Fei [1 ]
Hu, Xuyang [1 ]
Li, Yiteng [1 ]
Chen, Yihao [1 ]
Li, Ziyu [1 ]
Zhu, Zhenyu [1 ]
Yu, Shuisheng [1 ]
Tian, Dasheng [1 ]
Cheng, Li [1 ,2 ]
Zheng, Meige [1 ]
Jing, Juehua [1 ]
机构
[1] Anhui Med Univ, Affiliated Hosp 2, Dept Orthoped, Hefei 230032, Anhui, Peoples R China
[2] Anhui Med Univ, Sch Pharm, Hefei 230032, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Spinal cord injury; M1; macrophage; Endothelial cell; Tight junctions; BLOOD-BRAIN-BARRIER; FIBROTIC SCAR; DISRUPTION; MYELIN; MICROGLIA; INTEGRITY; PERMEABILITY; REGENERATION; DAMAGE;
D O I
10.1016/j.brainresbull.2021.12.019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
After spinal cord injury (SCI), endogenous angiogenesis occurs in the injury core, unexpectedly accompanied by continuous leakage of the blood-spinal cord barrier (BSCB), which may be caused by destruction of the tight junctions (TJs) between vascular endothelial cells-an important structure of the BSCB. Blood-derived macrophages infiltrate into the spinal cord, aggregate to the injury core and then polarize toward M1/M2 phenotypes after SCI. However, the effect of macrophages with different polarizations on the TJs between vascular endothelial cells remains unclear. Here, we demonstrated that from 7 days postinjury (dpi) to 28 dpi, accompanied by the aggregation of macrophages, the expression of claudin-5 (CLN-5) and zonula occludens-1 (ZO-1) in vascular endothelial cells in the injury core was significantly decreased in comparison to that in normal spinal cord tissue and in the penumbra. Moreover, the leakage of the BSCB was severe in the injury core, as demonstrated by FITCdextran perfusion. Notably, our study demonstrated that depletion of macrophages facilitated the restoration of TJs between vascular endothelial cells and decreased the leakage of BSCB in the injury core after SCI. Furthermore, we confirmed that the endothelial TJs could be impaired by M1 macrophages through secreting IL 6 in vitro, leading to an increased permeability of endothelial cells, but it was not significantly affected by M0 and M2 macrophages. These results indicated that the TJs between vascular endothelial cells were impaired by M1 macrophages in the injury core, potentially resulting in continuous leakage of the BSCB after SCI. Preventing M1 polarization of macrophages or blocking IL-6 in the injury core may promote restoration of the BSCB, thus accelerating functional recovery after SCI.
引用
收藏
页码:59 / 72
页数:14
相关论文
共 47 条
[1]   The Hedgehog Pathway Promotes Blood-Brain Barrier Integrity and CNS Immune Quiescence [J].
Alvarez, Jorge Ivan ;
Dodelet-Devillers, Aurore ;
Kebir, Hania ;
Ifergan, Igal ;
Fabre, Pierre J. ;
Terouz, Simone ;
Sabbagh, Mike ;
Wosik, Karolina ;
Bourbonniere, Lyne ;
Bernard, Monique ;
van Horssen, Jack ;
de Vries, Helga E. ;
Charron, Frederic ;
Prat, Alexandre .
SCIENCE, 2011, 334 (6063) :1727-1731
[2]   THE BIOLOGY OF REGENERATION FAILURE AND SUCCESS AFTER SPINAL CORD INJURY [J].
Amanda Phuong Tran ;
Warren, Philippa Mary ;
Silver, Jerry .
PHYSIOLOGICAL REVIEWS, 2018, 98 (02) :881-917
[3]   Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease [J].
Argaw, Azeb Tadesse ;
Asp, Linnea ;
Zhang, Jingya ;
Navrazhina, Kristina ;
Trinh Pham ;
Mariani, John N. ;
Mahase, Sean ;
Dutta, Dipankar J. ;
Seto, Jeremy ;
Kramer, Elisabeth G. ;
Ferrara, Napoleone ;
Sofroniew, Michael V. ;
John, Gareth R. .
JOURNAL OF CLINICAL INVESTIGATION, 2012, 122 (07) :2454-2468
[4]   VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown [J].
Argaw, Azeb Tadesse ;
Gurfein, Blake T. ;
Zhang, Yueting ;
Zameer, Andleeb ;
John, Gareth R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (06) :1977-1982
[5]   Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment [J].
Beck, Kevin D. ;
Nguyen, Hal X. ;
Galvan, Manuel D. ;
Salazar, Desiree L. ;
Woodruff, Trent M. ;
Anderson, Aileen J. .
BRAIN, 2010, 133 :433-447
[6]   Apolipoprotein E controls cerebrovascular integrity via cyclophilin A [J].
Bell, Robert D. ;
Winkler, Ethan A. ;
Singh, Itender ;
Sagare, Abhay P. ;
Deane, Rashid ;
Wu, Zhenhua ;
Holtzman, David M. ;
Betsholtz, Christer ;
Armulik, Annika ;
Sallstrom, Jan ;
Berk, Bradford C. ;
Zlokovic, Berislav V. .
NATURE, 2012, 485 (7399) :512-516
[7]   Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury [J].
Bellver-Landete, Victor ;
Bretheau, Floriane ;
Mailhot, Benoit ;
Vallieres, Nicolas ;
Lessard, Martine ;
Janelle, Marie-Eve ;
Vernoux, Nathalie ;
Tremblay, Marie-Eve ;
Fuehrmann, Tobias ;
Shoichet, Molly S. ;
Lacroix, Steve .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Interleukin 6-Mediated Endothelial Barrier Disturbances Can Be Attenuated by Blockade of the IL6 Receptor Expressed in Brain Microvascular Endothelial Cells [J].
Blecharz-Lang, Kinga G. ;
Wagner, Josephin ;
Fries, Alexa ;
Nieminen-Kelhae, Melina ;
Roesner, Joerg ;
Schneider, Ulf C. ;
Vajkoczy, Peter .
TRANSLATIONAL STROKE RESEARCH, 2018, 9 (06) :631-642
[9]   Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis [J].
Boven, LA ;
Van Meurs, M ;
Van Zwam, M ;
Wierenga-Wolf, A ;
Hintzen, RQ ;
Boot, RG ;
Aerts, JM ;
Amor, S ;
Nieuwenhuis, EE ;
Laman, JD .
BRAIN, 2006, 129 :517-526
[10]   Overcoming Macrophage-Mediated Axonal Dieback Following CNS Injury [J].
Busch, Sarah A. ;
Horn, Kevin P. ;
Silver, Daniel J. ;
Silver, Jerry .
JOURNAL OF NEUROSCIENCE, 2009, 29 (32) :9967-9976