Conductive Silk-Based Composites Using Biobased Carbon Materials

被引:59
作者
Barreiro, Diego Lopez [1 ]
Martin-Moldes, Zaira [1 ,2 ]
Yeo, Jingjie [1 ,2 ,3 ,4 ]
Shen, Sabrina [1 ]
Hawker, Morgan J. [2 ]
Martin-Martinez, Francisco J. [1 ]
Kaplan, David L. [2 ]
Buehler, Markus J. [1 ]
机构
[1] MIT, Dept Civil & Environm Engn, LAMM, 77 Massachusetts Ave,1-290, Cambridge, MA 02139 USA
[2] Tufts Univ, Dept Biomed Engn, 4 Colby St, Medford, MA 02155 USA
[3] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[4] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14850 USA
基金
美国国家卫生研究院;
关键词
biocarbon; bioinspired materials; biomass; biomaterials; composites; nanomaterials; silk; GRAPHENE OXIDE; FIBROIN; STRAIN; FILMS;
D O I
10.1002/adma.201904720
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is great interest in developing conductive biomaterials for the manufacturing of sensors or flexible electronics with applications in healthcare, tracking human motion, or in situ strain measurements. These biomaterials aim to overcome the mismatch in mechanical properties at the interface between typical rigid semiconductor sensors and soft, often uneven biological surfaces or tissues for in vivo and ex vivo applications. Here, the use of biobased carbons to fabricate conductive, highly stretchable, flexible, and biocompatible silk-based composite biomaterials is demonstrated. Biobased carbons are synthesized via hydrothermal processing, an aqueous thermochemical method that converts biomass into a carbonaceous material that can be applied upon activation as conductive filler in composite biomaterials. Experimental synthesis and full-atomistic molecular dynamics modeling are combined to synthesize and characterize these conductive composite biomaterials, made entirely from renewable sources and with promising applications in fields like biomedicine, energy, and electronics.
引用
收藏
页数:7
相关论文
共 32 条
  • [1] Poly(hydroxyalkanoate) Elastomers and Their Graphene Nanocomposites
    Barrett, John S. F.
    Abdala, Ahmed A.
    Srienc, Friedrich
    [J]. MACROMOLECULES, 2014, 47 (12) : 3926 - 3941
  • [2] Plasticizing Silk Protein for On-Skin Stretchable Electrodes
    Chen, Geng
    Matsuhisa, Naoji
    Liu, Zhiyuan
    Qi, Dianpeng
    Cai, Pingqiang
    Jiang, Ying
    Wan, Changjin
    Cui, Yajing
    Leow, Wan Ru
    Liu, Zhuangjian
    Gong, Suxuan
    Zhang, Ke-Qin
    Cheng, Yuan
    Chen, Xiaodong
    [J]. ADVANCED MATERIALS, 2018, 30 (21)
  • [3] High-Sensitivity Strain Gauge Based on a Single Wire of Gold Nanoparticles Fabricated by Stop-and-Go Convective Self-Assembly
    Farcau, Cosmin
    Sangeetha, Neralagatta M.
    Moreira, Helena
    Viallet, Benoit
    Grisolia, Jeremie
    Ciuculescu-Pradines, Diana
    Ressier, Laurence
    [J]. ACS NANO, 2011, 5 (09) : 7137 - 7143
  • [4] Silk Fibroin-Substrate Interactions at Heterogeneous Nanocomposite Interfaces
    Grant, Anise M.
    Kim, Ho Shin
    Dupnock, Trisha L.
    Hu, Kesong
    Yingling, Yaroslava G.
    Tsukruk, Vladimir V.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (35) : 6380 - 6392
  • [5] Silkworm silk-based materials and devices generated using bio-nanotechnology
    Huang, Wenwen
    Ling, Shengjie
    Li, Chunmei
    Omenetto, Fiorenzo G.
    Kaplan, David L.
    [J]. CHEMICAL SOCIETY REVIEWS, 2018, 47 (17) : 6486 - 6504
  • [6] Calcium ion coordination: A comparison with that of beryllium, magnesium, and zinc
    Katz, AK
    Glusker, JP
    Beebe, SA
    Bock, CW
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (24) : 5752 - 5763
  • [7] Keten S, 2010, NAT MATER, V9, P359, DOI [10.1038/NMAT2704, 10.1038/nmat2704]
  • [8] Epidermal Electronics
    Kim, Dae-Hyeong
    Lu, Nanshu
    Ma, Rui
    Kim, Yun-Soung
    Kim, Rak-Hwan
    Wang, Shuodao
    Wu, Jian
    Won, Sang Min
    Tao, Hu
    Islam, Ahmad
    Yu, Ki Jun
    Kim, Tae-il
    Chowdhury, Raeed
    Ying, Ming
    Xu, Lizhi
    Li, Ming
    Chung, Hyun-Joong
    Keum, Hohyun
    McCormick, Martin
    Liu, Ping
    Zhang, Yong-Wei
    Omenetto, Fiorenzo G.
    Huang, Yonggang
    Coleman, Todd
    Rogers, John A.
    [J]. SCIENCE, 2011, 333 (6044) : 838 - 843
  • [9] Kim DH, 2010, NAT MATER, V9, P511, DOI [10.1038/NMAT2745, 10.1038/nmat2745]
  • [10] Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing
    Koh, Leng-Duei
    Yeo, Jingjie
    Lee, Yeong Yuh
    Ong, Qunya
    Han, Mingyong
    Tee, Benjamin C-K.
    [J]. MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 86 : 151 - 172