We present a compact, room temperature, and narrowband terahertz source, based on difference-frequency generation in the organic nonlinear optical crystals OH1 (2-[3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene] malononitrile). The system employs a specific dual-wavelength infrared laser that emits coaxial, synchronous 10-ns pulses of similar energy and duration at wavelengths of 1064 nm and 1030 nm by using Nd:YAG and Yb:YAG crystals within the split laser cavity. The common part of the laser cavity comprises an acousto-optic Q-switch and an output coupler. The output is frequency-mixed in a stack of several OH1 crystals in a quasi-phase-matching configuration, which is determined on the basis of refractive index and absorption measurements in the 1-11 THz range. The system generates terahertz radiation in pulse trains with 1.0 mu W average power and a near-Gaussian intensity profile. (C) 2014 AIP Publishing LLC.