H(div) and H(curl)-conforming virtual element methods

被引:1
作者
da Veiga, L. Beirao [1 ,5 ]
Brezzi, F. [2 ,5 ]
Marini, L. D. [3 ,5 ]
Russo, A. [4 ,5 ]
机构
[1] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[2] IUSS, Piazza Vittoria 15, I-27100 Pavia, Italy
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[4] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 57, I-20125 Milan, Italy
[5] IMATI CNR, Via Ferrata 1, I-27100 Pavia, Italy
关键词
FINITE-DIFFERENCE METHOD; DIFFUSION-PROBLEMS; MIMETIC DISCRETIZATIONS; PARTICLE-PARTITION; ELLIPTIC PROBLEMS; UNITY METHOD; CONSTRUCTION; CURL; CONVERGENCE; FORMULATION;
D O I
10.1007/s00211-015-0746-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we construct virtual element spaces that are H(div)-conforming and H(curl)-conforming on general polygonal and polyhedral elements; these spaces can be interpreted as a generalization of well known finite elements. We moreover present the basic tools needed to make use of these spaces in the approximation of partial differential equations. Finally, we discuss the construction of exact sequences of VEM spaces.
引用
收藏
页码:303 / 332
页数:30
相关论文
共 50 条
  • [1] Equivalent projectors for virtual element methods
    Ahmad, B.
    Alsaedi, A.
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) : 376 - 391
  • [2] [Anonymous], 1975, MATH SCI ENG
  • [3] [Anonymous], 2013, SERIES COMPUTATIONAL
  • [4] Arnold D.N., 2015, PERIODIC TABLE FINIT
  • [5] Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
  • [6] Local maximum-entropy approximation schemes:: a seamless bridge between finite elements and meshfree methods
    Arroyo, M
    Ortiz, M
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 65 (13) : 2167 - 2202
  • [7] L2-well-posedness of 3D div-curl boundary value problems
    Auchmuty, G
    Alexander, JC
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 2005, 63 (03) : 479 - 508
  • [8] L2 well-posedness of planar div-curl systems
    Auchmuty, G
    Alexander, JC
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 160 (02) : 91 - 134
  • [9] Babuska I., 2003, Acta Numerica, V12, P1, DOI 10.1017/S0962492902000090
  • [10] Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO