Representing a concept lattice by a graph

被引:48
作者
Berry, A [1 ]
Sigayret, A [1 ]
机构
[1] Univ Clermont Ferrand, LIMOS, CNRS, UMR 6158,Ensemble Sci Cezeaux, F-63170 Clermont Ferrand, France
关键词
concept lattice; Galois lattice; co-bipartite graph; minimal separator;
D O I
10.1016/j.dam.2004.02.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Concept lattices (also called Galois lattices) are an ordering of the maximal rectangles defined by a binary relation. In this paper, we present a new relationship between lattices and graphs: given a binary relation R, we define an underlying graph G(R), and establish a one-to-one correspondence between the set of elements of the concept lattice of R and the set of minimal separators of G(R). We explain how to use the properties of minimal separators to define a sublattice, decompose a binary relation, and generate the elements of the lattice. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:27 / 42
页数:16
相关论文
共 42 条
[1]  
Barbut M., 1970, ORDRE CLASSIFICATION
[2]  
Berry A., 2000, International Journal of Foundations of Computer Science, V11, P397, DOI 10.1142/S0129054100000211
[3]   Separability generalizes Dirac's theorem [J].
Berry, A ;
Bordat, JP .
DISCRETE APPLIED MATHEMATICS, 1998, 84 (1-3) :43-53
[4]   Asteroidal triples of moplexes [J].
Berry, A ;
Bordat, JP .
DISCRETE APPLIED MATHEMATICS, 2001, 111 (03) :219-229
[5]  
BERRY A, 2002, LNCS P OOIS 02
[6]  
BERRY A, 1998, THESIS U MONTPELLIER
[7]  
Berry A., 1999, P 10 ANN ACM SIAM S, P860
[8]  
BERRY A, 1997, 97213 LIRMM
[9]  
BERRY A, 1999, MATH INFORMATIQUE SC, V146, P5
[10]  
Birkhoff G, 1967, Lattice Theory, V3