Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2

被引:71
|
作者
Grodzinski, B [1 ]
Jiao, JR [1 ]
Leonardos, ED [1 ]
机构
[1] Univ Guelph, Dept Plant Agr, Guelph, ON N1G 2W1, Canada
关键词
D O I
10.1104/pp.117.1.207
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The ability of 21 C-3 and C-4 monocot and dicot species to rapidly export newly fixed C in the light at both ambient and enriched CO2 levels was compared. Photosynthesis and concurrent export rates were estimated during isotopic equilibrium of the transport sugars using a steady-state (CO2)-C-14-labeling procedure. At ambient CO2 photosynthesis and export rates for C-3 species were 5 to 15 and 1 to 10 mu mol C m(-2) s(-1), respectively, and 20 to 30 and 15 to 22 mu mol C m(-2) s(-1), respectively, for C-4 species. A linear regression plot of export on photosynthesis rate of all species had a correlation coefficient of 0.87. When concurrent export was expressed as a percentage of photosynthesis, several C-3 dicots that produced transport sugars other than Suc had high efflux rates relative to photosynthesis, comparable to those of C-4 species. At high CO2 photosynthetic and export rates were only slightly altered in C, species, and photosynthesis increased but export rates did not in all C(3)species. The C-3 species that had high efflux rates relative to photosynthesis at ambient CO2 exported at rates comparable to those of C-4 species on both an absolute basis and as a percentage of photosynthesis. At ambient CO2 there were strong linear relationships between photosynthesis, sugar synthesis, and concurrent export. However, at high CO2 the relationships between photosynthesis and export rate and between sugar synthesis and export rate were not as strong because sugars and starch were accumulated.
引用
收藏
页码:207 / 215
页数:9
相关论文
共 50 条
  • [41] DIFFERENTIAL STOMATAL RESPONSE BETWEEN C3 AND C4 SPECIES TO ATMOSPHERIC CO2 CONCENTRATION AND LIGHT
    AKITA, S
    MOSS, DN
    CROP SCIENCE, 1972, 12 (06) : 789 - 793
  • [42] Is C4 photosynthesis less phenotypically plastic than C3 photosynthesis?
    Sage, RF
    McKown, AD
    JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (02) : 303 - 317
  • [43] C3 and C4 Biomass Allocation Responses to Elevated CO2 and Nitrogen: Contrasting Resource Capture Strategies
    White, K. P.
    Langley, J. A.
    Cahoon, D. R.
    Megonigal, J. P.
    ESTUARIES AND COASTS, 2012, 35 (04) : 1028 - 1035
  • [44] Simulation of the physiological and photosynthetic characteristics of C3 and C4 plants under elevated temperature and CO2 concentration
    Tian, Wei
    Su, Chenfei
    Zhang, Nan
    Zhao, Yuwei
    Tang, Long
    ECOLOGICAL MODELLING, 2024, 495
  • [45] Differential improvement in transpiration efficiency of C3 and C4 crop plants under elevated CO2 conditions
    Lakshmi, N. Jyothi
    Vanaja, M.
    Yadav, S. K.
    Maheswari, M.
    Patil, Amol
    Prasad, C. H. Ram
    Satish, P.
    Venkateswarlu, B.
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2014, 84 (03): : 411 - 413
  • [46] Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars
    Raymond V. Barbehenn
    David N. Karowe
    Angela Spickard
    Oecologia, 2004, 140 : 86 - 95
  • [47] C3 and C4 Biomass Allocation Responses to Elevated CO2 and Nitrogen: Contrasting Resource Capture Strategies
    K. P. White
    J. A. Langley
    D. R. Cahoon
    J. P. Megonigal
    Estuaries and Coasts, 2012, 35 : 1028 - 1035
  • [48] Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars
    Barbehenn, RV
    Karowe, DN
    Spickard, A
    OECOLOGIA, 2004, 140 (01) : 86 - 95
  • [49] Seasonal contribution of C3 and C4 species to ecosystem respiration and photosynthesis estimated from isotopic measurements of atmospheric CO2 at a grassland in Japan
    Shimoda, Seiji
    Murayama, Shohei
    Mo, Wenhong
    Oikawa, Takehisa
    AGRICULTURAL AND FOREST METEOROLOGY, 2009, 149 (3-4) : 603 - 613
  • [50] Evolutionary transition from C3 to C4 photosynthesis and the route to C4 rice
    Zheng Liu
    Ning Sun
    Shangjun Yang
    Yanhong Zhao
    Xiaoqin Wang
    Xingyu Hao
    Zhijun Qiao
    Biologia, 2013, 68 : 577 - 586