Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2

被引:71
|
作者
Grodzinski, B [1 ]
Jiao, JR [1 ]
Leonardos, ED [1 ]
机构
[1] Univ Guelph, Dept Plant Agr, Guelph, ON N1G 2W1, Canada
关键词
D O I
10.1104/pp.117.1.207
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The ability of 21 C-3 and C-4 monocot and dicot species to rapidly export newly fixed C in the light at both ambient and enriched CO2 levels was compared. Photosynthesis and concurrent export rates were estimated during isotopic equilibrium of the transport sugars using a steady-state (CO2)-C-14-labeling procedure. At ambient CO2 photosynthesis and export rates for C-3 species were 5 to 15 and 1 to 10 mu mol C m(-2) s(-1), respectively, and 20 to 30 and 15 to 22 mu mol C m(-2) s(-1), respectively, for C-4 species. A linear regression plot of export on photosynthesis rate of all species had a correlation coefficient of 0.87. When concurrent export was expressed as a percentage of photosynthesis, several C-3 dicots that produced transport sugars other than Suc had high efflux rates relative to photosynthesis, comparable to those of C-4 species. At high CO2 photosynthetic and export rates were only slightly altered in C, species, and photosynthesis increased but export rates did not in all C(3)species. The C-3 species that had high efflux rates relative to photosynthesis at ambient CO2 exported at rates comparable to those of C-4 species on both an absolute basis and as a percentage of photosynthesis. At ambient CO2 there were strong linear relationships between photosynthesis, sugar synthesis, and concurrent export. However, at high CO2 the relationships between photosynthesis and export rate and between sugar synthesis and export rate were not as strong because sugars and starch were accumulated.
引用
收藏
页码:207 / 215
页数:9
相关论文
共 50 条
  • [21] Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland
    Maherali, H
    Reid, CD
    Polley, HW
    Johnson, HB
    Jackson, RB
    PLANT CELL AND ENVIRONMENT, 2002, 25 (04): : 557 - 566
  • [22] Effects of elevated CO2 on photosynthetic traits of native and invasive C3 and C4 grasses
    Hager, Heather A.
    Ryan, Geraldine D.
    Kovacs, Hajnal M.
    Newman, Jonathan A.
    BMC ECOLOGY, 2016, 16
  • [23] Combined effect of elevated CO2 and temperature on the growth and phenology of two annual C3 and C4 weedy species
    Lee, Jae-Seok
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2011, 140 (3-4) : 484 - 491
  • [24] Mehler reaction plays a role in C3 and C4 photosynthesis under shade and low CO2
    Sagun, Julius Ver
    Badger, Murray R.
    Chow, Wah Soon
    Ghannoum, Oula
    PHOTOSYNTHESIS RESEARCH, 2021, 149 (1-2) : 171 - 185
  • [25] Mehler reaction plays a role in C3 and C4 photosynthesis under shade and low CO2
    Julius Ver Sagun
    Murray R. Badger
    Wah Soon Chow
    Oula Ghannoum
    Photosynthesis Research, 2021, 149 : 171 - 185
  • [26] Photorespiration connects C3 and C4 photosynthesis
    Braeutigam, Andrea
    Gowik, Udo
    JOURNAL OF EXPERIMENTAL BOTANY, 2016, 67 (10) : 2953 - 2962
  • [27] The temperature response of C3 and C4 photosynthesis
    Sage, Rowan F.
    Kubien, David S.
    PLANT CELL AND ENVIRONMENT, 2007, 30 (09): : 1086 - 1106
  • [28] The Path from C3 to C4 Photosynthesis
    Gowik, Udo
    Westhoff, Peter
    PLANT PHYSIOLOGY, 2011, 155 (01) : 56 - 63
  • [29] Effect of Elevated CO2and Temperature on Plants with Different Type of Photosynthesis: Quinoa (C3) and Amaranth (C4)
    Z. F. Rakhmankulova
    E. V. Shuyskaya
    M. Yu. Prokofieva
    L. T. Saidova
    P. Yu. Voronin
    Russian Journal of Plant Physiology, 2023, 70
  • [30] Effect of Elevated CO2and Temperature on Plants with Different Type of Photosynthesis: Quinoa (C3) and Amaranth (C4)
    Rakhmankulova, Z. F.
    Shuyskaya, E. V.
    Prokofieva, M. Yu.
    Saidova, L. T.
    Voronin, P. Yu.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2023, 70 (06)