Activation of effector immune cells promotes tumor stochastic extinction: A homotopy analysis approach

被引:30
作者
Sardanyes, Josep [1 ,2 ]
Rodrigues, Carla [3 ]
Januario, Cristina [4 ]
Martins, Nuno [5 ]
Gil-Gomez, Gabriel [6 ]
Duarte, Jorge [4 ,5 ]
机构
[1] Univ Pompeu Fabra, ICREA Complex Syst Lab, Barcelona 08003, Spain
[2] Inst Evolutionary Biol UPF CSIC PRBB, Barcelona 08003, Spain
[3] ESTS Technol Super Sch Setubal, Dept Math, P-2914761 Estefanilha, Setubal, Portugal
[4] ISEL Engn Super Inst Lisbon, Dept Math, P-1949014 Lisbon, Portugal
[5] Univ Lisbon, Inst Super Tecn, Dept Math, Ctr Math Anal Geometry & Dynam Syst, P-1049001 Lisbon, Portugal
[6] IMIM Hosp del Mar Med Res Inst, Canc Res Programme, Apoptosis Signalling Grp, Barcelona 08003, Spain
关键词
Cancer; Chaos; Homotopy solutions; Nonlinear dynamics; Tumor extinction; CHAOS THEORY; CANCER; IMMUNOTHERAPY; DYNAMICS;
D O I
10.1016/j.amc.2014.12.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we provide homotopy solutions of a cancer nonlinear model describing the dynamics of tumor cells in interaction with healthy and effector immune cells. We apply a semi-analytic technique for solving strongly nonlinear systems - the Step Homotopy Analysis Method (SHAM). This algorithm, based on a modification of the standard homotopy analysis method (HAM), allows to obtain a one-parameter family of explicit series solutions. By using the homotopy solutions, we first investigate the dynamical effect of the activation of the effector immune cells in the deterministic dynamics, showing that an increased activation makes the system to enter into chaotic dynamics via a perioddoubling bifurcation scenario. Then, by adding demographic stochasticity into the homotopy solutions, we show, as a difference from the deterministic dynamics, that an increased activation of the immune cells facilitates cancer clearance involving tumor cells extinction and healthy cells persistence. Our results highlight the importance of therapies activating the effector immune cells at early stages of cancer progression. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 495
页数:12
相关论文
共 44 条
[1]   Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method [J].
Abbasbandy, S. .
APPLIED MATHEMATICAL MODELLING, 2008, 32 (12) :2706-2714
[2]   NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS [J].
ADOMIAN, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 55 (02) :441-452
[3]   A REVIEW OF THE DECOMPOSITION METHOD AND SOME RECENT RESULTS FOR NONLINEAR EQUATIONS [J].
ADOMIAN, G .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (05) :101-127
[4]  
ADOMIAN G, 1984, MATH MODELLING, V5, P521
[5]   Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer [J].
Ali, Khaled ;
Soond, Dalya R. ;
Pineiro, Roberto ;
Hagemann, Thorsten ;
Pearce, Wayne ;
Lim, Ee Lyn ;
Bouabe, Hicham ;
Scudamore, Cheryl L. ;
Hancox, Timothy ;
Maecker, Heather ;
Friedman, Lori ;
Turner, Martin ;
Okkenhaug, Klaus ;
Vanhaesebroeck, Bart .
NATURE, 2014, 510 (7505) :407-+
[6]   CHAOS REDUCES SPECIES EXTINCTION BY AMPLIFYING LOCAL-POPULATION NOISE [J].
ALLEN, JC ;
SCHAFFER, WM ;
ROSKO, D .
NATURE, 1993, 364 (6434) :229-232
[7]   Homotopy analysis method for solving fractional Lorenz system [J].
Alomari, A. K. ;
Noorani, M. S. M. ;
Nazar, R. ;
Li, C. P. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (07) :1864-1872
[8]  
[Anonymous], 1998, ASYMPTOTIC APPROACHE
[9]  
[Anonymous], 2003, Beyond Perturbation: Introduction to Homotopy Analysis Method, DOI 10.1201/9780203491164
[10]   Homotopy Analysis Method for Solving Biological Population Model [J].
Arafa, A. A. M. ;
Rida, S. Z. ;
Mohamed, H. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (05) :797-800