Wavelet-Galerkin method for the Kolmogorov equation

被引:3
作者
Liang, ZG [1 ]
Yau, SST [1 ]
机构
[1] Univ Illinois, Dept MSCS, Chicago, IL 60607 USA
关键词
nonlinear filtering; Kolmogorov equation; Wavelet-Galerkin method; Daubechies scaling function; pyramid algorithm;
D O I
10.1016/j.mcm.2003.07.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
It is well known that the Kolmogorov equation plays an important role in applied science. For example, the nonlinear filtering problem, which plays a key role in modern technologies, was solved by Yau and Yau [1] by reducing it to the off-line computation of the Kolmogorov equation. In this paper, we develop a theorical foundation of using the wavelet-Galerkin method to solve linear parabolic P.D.E. We apply our theory to the Kolmogorov equation. We give a rigorous proof that the solution of the Kolmogorov equation can be approximated very well in any finite domain by our wavelet-Galerkin method. An example is provided by using Daubechies D-4 scaling functions. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1093 / 1121
页数:29
相关论文
共 22 条
[1]  
BANK RE, 1981, ELLIPTIC PROBLEM SOL
[2]  
BELLMAN RE, 1952, STABILITY THEORY DIF
[3]  
Benes V. E., 1983, Stochastic Processes & their Applications, V14, P233, DOI 10.1016/0304-4149(83)90002-9
[4]   LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS [J].
BERGER, MJ ;
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) :64-84
[5]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[6]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[7]  
Chui C. K., 1992, An introduction to wavelets, V1
[8]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[9]  
Gilbarg D., 1977, Grundlehren der mathematischen Wissenschaften, V224
[10]  
Hardy G.H., 1952, INEQUALITIES