Simple Physical Adversarial Examples against End-to-End Autonomous Driving Models

被引:39
作者
Boloor, Adith [1 ]
He, Xin [2 ]
Gill, Christopher [3 ]
Vorobeychik, Yevgeniy [3 ]
Zhang, Xuan [1 ]
机构
[1] Washington Univ, Elect & Syst Engn, St Louis, MO 63110 USA
[2] Univ Michigan, Comp Sci & Engn, Ann Arbor, MI 48109 USA
[3] Washington Univ, Comp Sci & Engn, St Louis, MO 63110 USA
来源
2019 IEEE INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (ICESS) | 2019年
关键词
machine learning; adversarial examples; autonomous driving; end-to-end learning;
D O I
10.1109/icess.2019.8782514
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent advances in machine learning, especially techniques such as deep neural networks, are promoting a range of high-stakes applications, including autonomous driving, which often relies on deep learning for perception. While deep learning for perception has been shown to be vulnerable to a host of subtle adversarial manipulations of images, end-to-end demonstrations of successful attacks, which manipulate the physical environment and result in physical consequences, are scarce. Moreover, attacks typically involve carefully constructed adversarial examples at the level of pixels. We demonstrate the first end-to-end attacks on autonomous driving in simulation, using simple physically realizable attacks: the painting of black lines on the road. These attacks target deep neural network models for end-to-end autonomous driving control. A systematic investigation shows that such attacks are surprisingly easy to engineer, and we describe scenarios (e.g., right turns) in which they are highly effective, and others that are less vulnerable (e.g., driving straight). Further, we use network deconvolution to demonstrate that the attacks succeed by inducing activation patterns similar to entirely different scenarios used in training.
引用
收藏
页数:7
相关论文
共 20 条
[1]  
[Anonymous], 2016, CORR
[2]  
[Anonymous], 2018, ADVERSARIAL MACHINE
[3]  
[Anonymous], 2017, COMMUN ACM, DOI DOI 10.1145/3065386
[4]  
[Anonymous], CAV
[5]  
[Anonymous], 2005, KDD
[6]  
[Anonymous], 2017, FSR
[7]  
[Anonymous], 2017, CORR
[8]  
Bojarski M., 2017, CORR
[9]  
Codevilla F, 2018, IEEE INT CONF ROBOT, P4693
[10]  
Dosovitskiy A., 2017, CORL