Study on a PEG/epoxy shape-stabilized phase change material: Preparation, thermal properties and thermal storage performance

被引:65
|
作者
Wu, Bo [1 ]
Jiang, Yuanyuan [1 ]
Wang, Yanjun [1 ]
Zhou, Changlin [1 ]
Zhang, Xi [1 ]
Lei, Jingxin [1 ]
机构
[1] Sichuan Univ, State Key Lab Polymer Mat Engn, Polymer Res Inst, Chengdu 610065, Sichuan, Peoples R China
关键词
Shape-stabilized phase change material; Polyethylene glycol; Thermal stability; Thermal energy storage; CONTAINING EPOXY-RESINS; ENERGY STORAGE; POLYETHYLENE-GLYCOL; COMPOSITE; BLENDS; CONDUCTIVITY; CONSERVATION; TEMPERATURE; BUILDINGS; PERLITE;
D O I
10.1016/j.ijheatmasstransfer.2018.05.153
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, PEG based SSPCMs were successfully prepared using 9,10-dihydro-9-oxa-10-phosphaphe nanthrene-10-oxide (DOPO) modified epoxy resins as reliable supporting materials in the absence of solvent. The encapsulated PEG acted as phase change functional domains and DOPO was used to enhance the thermal stability of polymeric SSPCMs. The chemical composition and microstructure of prepared SSPCMs were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) were conducted to investigate the crystalline properties, phase change properties and thermal stability of SSPCMs. Heat storage and release performance test was conducted to certify the reversible heat storage and release performance of SSPCMs. Thermal cycling test was also performed to illustrate the thermal reliability of SSPCMs. From DSC results, the prepared SSPCMs melted at 67.7 degrees C and crystallized at 27.9 degrees C and the corresponding latent heat are 112.0 J/g and 108.0 J/g, respectively. TG results showed that SSPCMs have good thermal stability with the onset decomposition temperature far beyond their working temperature. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1134 / 1142
页数:9
相关论文
共 50 条
  • [21] Modified mesoporous silica filled with PEG as a shape-stabilized phase change materials for improved thermal energy storage performance
    Feng, Daili
    Feng, Yanhui
    Li, Pei
    Zang, Yuyang
    Wang, Chen
    Zhang, Xinxin
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 292
  • [22] Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage
    Dominici, Franco
    Miliozzi, Adio
    Torre, Luigi
    ENERGIES, 2021, 14 (21)
  • [23] THERMAL PERFORMANCE OF THE SHAPE-STABILIZED PHASE CHANGE MATERIAL WALL PREPARED BY DIFFERENT METHODS
    Yan, Q. Y.
    Huo, R.
    Li, L. S.
    7TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATING AND AIR CONDITIONING, PROCEEDINGS OF ISHVAC 2011, VOLS I-IV, 2011, : 714 - 718
  • [24] Preparation and thermal properties of shape-stabilized polyethylene glycol/mesoporous silica composite phase change materials for thermal energy storage
    Wang, Chaoming
    Cai, Zhengyu
    Chen, Ke
    Huang, Jun
    Wang, Tingjun
    ENERGY STORAGE, 2019, 1 (02)
  • [25] Influence of gelatinization conditions on thermal properties of shape-stabilized phase change materials for thermal energy storage
    National and Local Joint Engineering Laboratory of Traffic Civil Engineering Materials, Chongqing Jiaotong University, Chongqing
    400074, China
    不详
    400067, China
    Gaofenzi Cailiao Kexue Yu Gongcheng, 3 (59-64):
  • [26] Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: Preparation and thermal energy storage properties
    Sari, Ahmet
    Bicer, Alper
    Al-Sulaiman, F. A.
    Karaipekli, Ali
    Tyagi, V. V.
    ENERGY AND BUILDINGS, 2018, 164 : 166 - 175
  • [27] Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates
    Zhou, Guobing
    Zhang, Yinping
    Zhang, Qunli
    Lin, Kunping
    Di, Hongfa
    APPLIED ENERGY, 2007, 84 (10) : 1068 - 1077
  • [28] Influence of additives on thermal conductivity of shape-stabilized phase change material
    Zhang, Yinping
    Ding, Hanhong
    Wang, Xin
    Yang, Rui
    Lin, Kunping
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (11) : 1692 - 1702
  • [29] Stearic acid hybridizing kaolinite as shape-stabilized phase change material for thermal energy storage
    Li, Jianwen
    Zuo, Xiaochao
    Zhao, Xiaoguang
    Li, Daokui
    Yang, Huaming
    APPLIED CLAY SCIENCE, 2019, 183
  • [30] Paraffin/graphene sponge composite as a shape-stabilized phase change material for thermal energy storage
    Li Pengyang
    Chen Qiang
    Peng Qingyu
    He Xiaodong
    PIGMENT & RESIN TECHNOLOGY, 2021, 50 (05) : 412 - 418