The molecular basis of extensively drug-resistant Salmonella Typhi isolates from pediatric septicemia patients

被引:14
作者
Kim, Chanmi [1 ]
Latif, Iqra [2 ]
Neupane, Durga P. [1 ]
Lee, Gi Young [1 ]
Kwon, Ryan S. [1 ]
Batool, Alia [3 ]
Ahmed, Qasim [3 ]
Qamar, Muhammad Usman [2 ]
Song, Jeongmin [1 ]
机构
[1] Cornell Univ, Coll Vet Med, Dept Microbiol & Immunol, Ithaca, NY 14853 USA
[2] Govt Coll Univ Faisalabad, Fac Life Sci, Dept Microbiol, Faisalabad, Pakistan
[3] Fatima Mem Hosp, Dept Pathol, Lahore, Pakistan
来源
PLOS ONE | 2021年 / 16卷 / 09期
关键词
ENTERICA SEROVAR TYPHI; TYPHOIDAL SALMONELLA; CIPROFLOXACIN; GENES;
D O I
10.1371/journal.pone.0257744
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sepsis is a syndromic response to infections and is becoming an emerging threat to the public health sector, particularly in developing countries. Salmonella Typhi (S. Typhi), the cause of typhoid fever, is one primary cause of pediatric sepsis in typhoid endemic areas. Extensively drug-resistant (XDR) S. Typhi is more common among pediatric patients, which is responsible for over 90% of the reported XDR typhoid cases, but the majority of antibiotic resistance studies available have been carried out using S. Typhi isolates from adult patients. Here, we characterized antibiotic-resistance profiles of XDR S. Typhi isolates from a medium size cohort of pediatric typhoid patients (n = 45, 68.89% male and 31.11% female) and determined antibiotic-resistance-related gene signatures associated with common treatment options to typhoid fever patients of 18 XDR S. Typhi representing all 45 isolates. Their ages were 1-13 years old: toddlers aging 1-2 years old (n = 9, 20%), pre-schoolers aging 3-5 years old (n = 17, 37.78%), school-age children aging 6-12 years old (n = 17, 37.78%), and adolescents aging 13-18 years old (n = 2, 4.44%). Through analyzing bla-(TEM1), dhfR7, sul1, and catA1 genes for multidrug-resistance, qnrS, gyrA, gyrB, parC, and parE for fluoroquinolone-resistance, bla(CTX-M-15) for XDR, and macAB and acrAB efflux pump system-associated genes, we showed the phenotype of the XDR S. Typhi isolates matches with their genotypes featured by the acquisitions of the genes bla(TEM1), dhfR7, sul1, catA1, qnrS, and bla(CTX-M-15) and a point mutation on gyrA. This study informs the molecular basis of antibiotic-resistance among recent S. Typhi isolates from pediatric septicemia patients, therefore providing insights into the development of molecular detection methods and treatment strategies for XDR S. Typhi.
引用
收藏
页数:15
相关论文
共 48 条
  • [1] Accou-Demartin M, 2011, EMERG INFECT DIS, V17, P1091, DOI [10.3201/eid1706.101242, 10.3201/eid/1706.101242]
  • [2] Mechanisms of typhoid toxin neutralization by antibodies targeting glycan receptor binding and nuclease subunits
    Ahn, Changhwan
    Yang, Yi-An
    Neupane, Durga P.
    Nguyen, Tri
    Richards, Angelene F.
    Sim, Ji Hyun
    Mantis, Nicholas J.
    Song, Jeongmin
    [J]. ISCIENCE, 2021, 24 (05)
  • [3] Azithromycin Resistance in Clinical Isolates of Salmonella enterica Serovars Typhi and Paratyphi in Bangladesh
    Ahsan, Sunjukta
    Rahman, Sahida
    [J]. MICROBIAL DRUG RESISTANCE, 2019, 25 (01) : 8 - 13
  • [4] Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban typhoid fever transmission
    Baker, Stephen
    Holt, Kathryn E.
    Clements, Archie C. A.
    Karkey, Abhilasha
    Arjyal, Amit
    Boni, Maciej F.
    Dongol, Sabina
    Hammond, Naomi
    Koirala, Samir
    Pham Thanh Duy
    Tran Vu Thieu Nga
    Campbell, James I.
    Dolecek, Christiane
    Basnyat, Buddha
    Dougan, Gordon
    Farrar, Jeremy J.
    [J]. OPEN BIOLOGY, 2011, 1
  • [5] Beyond Antimicrobial Resistance: Evidence for a Distinct Role of the AcrD Efflux Pump in Salmonella Biology
    Buckner, Michelle M. C.
    Blair, Jessica M. A.
    La Ragione, Roberto M.
    Newcombe, Jane
    Dwyer, Daniel J.
    Ivens, Alasdair
    Piddock, Laura J. V.
    [J]. MBIO, 2016, 7 (06):
  • [6] Molecular analysis of high-level ciprofloxacin resistance in Salmonella enterica serovar Typhi and S. Paratyphi A: need to expand the QRDR region?
    Capoor, M. R.
    Nair, D.
    Walia, N. S.
    Routela, R. S.
    Grover, S. S.
    Deb, M.
    Aggarwal, P.
    Pillai, P. K.
    Bifani, P. J.
    [J]. EPIDEMIOLOGY AND INFECTION, 2009, 137 (06) : 871 - 878
  • [7] Clinical characteristics in adult patients with Salmonella bacteremia and analysis of ciprofloxacin-nonsusceptible isolates
    Cheng, Ming-Wei
    Lee, Chun-Ming
    Wang, Nai-Yu
    Wu, Alice Y.
    Lin, Chih-Chen
    Weng, Li-Chuan
    Liu, Chang-Pan
    Shih, Shou-Chuan
    [J]. JOURNAL OF MICROBIOLOGY IMMUNOLOGY AND INFECTION, 2015, 48 (06) : 692 - 698
  • [8] Antimicrobial Resistance in Salmonella enterica Serovar Typhi Isolates from Bangladesh, Indonesia, Taiwan, and Vietnam
    Chiou, Chien-Shun
    Lauderdale, Tsai-Ling
    Dac Cam Phung
    Watanabe, Haruo
    Kuo, Jung-Che
    Wang, Pei-Jen
    Liu, Yen-Yi
    Liang, Shiu-Yun
    Chen, Pei-Chen
    [J]. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2014, 58 (11) : 6501 - 6507
  • [9] Global Trends in Typhoid and Paratyphoid Fever
    Crump, John A.
    Mintz, Eric D.
    [J]. CLINICAL INFECTIOUS DISEASES, 2010, 50 (02) : 241 - 246
  • [10] Multidrug efflux pumps: structure, function and regulation
    Du, Dijun
    Wang-Kan, Xuan
    Neuberger, Arthur
    van Veen, Hendrik W.
    Pos, Klaas M.
    Piddock, Laura J. V.
    Luisi, Ben F.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2018, 16 (09) : 523 - 539