On generalized bicomplex k-Fibonacci numbers

被引:1
作者
Yagmur, Tulay [1 ]
机构
[1] Univ Aksaray, Dept Math, TR-68100 Aksaray, Turkey
关键词
Fibonacci numbers; k-Fibonacci numbers; Bicomplex numbers; Generalized bicomplex numbers; Generalized bicomplex k-Fibonacci numbers;
D O I
10.7546/nntdm.2019.25.4.123-133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the generalized bicomplex k-Fibonacci numbers. We also give the generating function and Binet's formula for these numbers. In addition, we obtain some identities such as Honsberger, d' Ocagne's, Catalan's, and Cassini's identities involving the generalized bicomplex k-Fibonacci numbers.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 13 条
[1]  
AYDIN FT, 2018, INT J MATH ANAL, V12, P363
[2]  
Aydin FugenTorunbalci., 2018, COMMUNICATIONS ADV M, V1, P142, DOI [10.33434/cams.439752, DOI 10.33434/CAMS.439752]
[3]  
Bilgici G., 2017, Konuralp J. Math., V5, P102
[4]  
Bolat C., 2010, INT J CONT MATH SCI, V5, P1097
[5]  
Catarino P., 2014, INT J CONT MATH SCI, V9, P37, DOI DOI 10.12988/ijcms.2014.311120
[6]   The k-Fibonacci sequence and the Pascal 2-triangle [J].
Falcon, Sergio ;
Plaza, Angel .
CHAOS SOLITONS & FRACTALS, 2007, 33 (01) :38-49
[7]   On the Fibonacci k-numbers [J].
Falcon, Sergio ;
Plaza, Angel .
CHAOS SOLITONS & FRACTALS, 2007, 32 (05) :1615-1624
[8]   Generalized Bicomplex Numbers and Lie Groups [J].
Karakus, Siddika Ozkaldi ;
Aksoyak, Ferdag Kahraman .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (04) :943-963
[9]  
LUNA-ELIZARRARÁS M.E, 2012, Cubo, V14, P61
[10]  
Nurkan S. K., 2018, INT J PURE APPL MATH, V120, P365, DOI [10.12732/ijpam.v120i3.7, DOI 10.12732/IJPAM.V120I3.7]