Explicit integration of the Henon-Heiles Hamiltonians

被引:32
作者
Conte, R [1 ]
Musette, M
Verhoeven, C
机构
[1] CEA Saclay, CNRS, URA 2464, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France
[2] Free Univ Brussels, B-1050 Brussels, Belgium
[3] Int Solvay Inst Phys & Chem, B-1050 Brussels, Belgium
关键词
D O I
10.2991/jnmp.2005.12.s1.18
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the cubic and quartic Henon-Heiles Hamiltonians with additional inverse square terms, which pass the Painleve test for only seven sets of coefficients. For all the not yet integrated cases we prove the singlevaluedness of the general solution. The seven Hamiltonians enjoy two properties: meromorphy of the general solution, which is hyperelliptic with genus two and completeness in the Painleve sense (impossibility to add any term to the Hamiltonian without destroying the Painleve property).
引用
收藏
页码:212 / 227
页数:16
相关论文
共 50 条
[1]   On the weak Kowalevski-Painleve property for hyperelliptically separable systems [J].
Abenda, S ;
Fedorov, Y .
ACTA APPLICANDAE MATHEMATICAE, 2000, 60 (02) :137-178
[2]   THE COMPLETE WHITTAKER THEOREM FOR TWO-DIMENSIONAL INTEGRABLE SYSTEMS AND ITS APPLICATION [J].
ANKIEWICZ, A ;
PASK, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (18) :4203-4208
[3]  
Arnold V., 1976, METHODES MATH MECANI
[4]   HAMILTONIAN STRUCTURES AND LAX EQUATIONS [J].
BABELON, O ;
VIALLET, CM .
PHYSICS LETTERS B, 1990, 237 (3-4) :411-416
[5]   INTEGRABLE QUARTIC POTENTIALS AND COUPLED KDV EQUATIONS [J].
BAKER, S ;
ENOLSKII, VZ ;
FORDY, AP .
PHYSICS LETTERS A, 1995, 201 (2-3) :167-174
[6]  
BAKER S, 1995, THESIS U LEEDS LEEDS
[7]   A GENERALIZED HENON-HEILES SYSTEM AND RELATED INTEGRABLE NEWTON EQUATIONS [J].
BLASZAK, M ;
RAUCHWOJCIECHOWSKI, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (04) :1693-1709
[8]   INTEGRABLE HAMILTONIAN-SYSTEMS AND THE PAINLEVE PROPERTY [J].
BOUNTIS, T ;
SEGUR, H ;
VIVALDI, F .
PHYSICAL REVIEW A, 1982, 25 (03) :1257-1264
[9]  
BUREAU FJ, 1964, ANN MAT PUR APPL, V66, P1, DOI DOI 10.1007/BF02412437
[10]   ANALYTIC STRUCTURE OF THE HENON-HEILES HAMILTONIAN IN INTEGRABLE AND NON-INTEGRABLE REGIMES [J].
CHANG, YF ;
TABOR, M ;
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) :531-538