Defining the wheat microbiome: Towards microbiome-facilitated crop production

被引:45
|
作者
Kavamura, Vanessa N. [1 ]
Mendes, Rodrigo [2 ]
Bargaz, Adnane [3 ]
Mauchline, Tim H. [1 ]
机构
[1] Sustainable Agr Sci, Rothamsted Res, Harpenden, Herts, England
[2] Embrapa Environm, Lab Environm Microbiol, Jaguariuna, SP, Brazil
[3] Mohammed VI Polytech Univ, Agrobiosci, Benguerir, Morocco
基金
英国生物技术与生命科学研究理事会; 英国自然环境研究理事会;
关键词
Wheat; Rhizosphere; Microbiome; Sustainable intensification; BACTERIAL COMMUNITIES; SP-NOV; RHIZOSPHERE MICROBIOME; BIOCONTROL AGENTS; PLANT MICROBIOME; ACC-DEAMINASE; GEN; NOV; SOIL; GROWTH; DIVERSITY;
D O I
10.1016/j.csbj.2021.01.045
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Wheat is one of the world's most important crops, but its production relies heavily on agrochemical inputs which can be harmful to the environment when used excessively. It is well known that a multitude of microbes interact with eukaryotic organisms, including plants, and the sum of microbes and their functions associated with a given host is termed the microbiome. Plant-microbe interactions can be beneficial, neutral or harmful to the host plant. Over the last decade, with the development of next generation DNA sequencing technology, our understanding of the plant microbiome structure has dramatically increased. Considering that defining the wheat microbiome is key to leverage crop production in a sustainable way, here we describe how different factors drive microbiome assembly in wheat, including crop management, edaphic-environmental conditions and host selection. In addition, we highlight the benefits to take a multidisciplinary approach to define and explore the wheat core microbiome to generate solutions based on microbial (synthetic) communities or single inoculants. Advances in plant microbiome research will facilitate the development of microbial strategies to guarantee a sustainable intensification of crop production. (C) 2021 Rothamsted Research. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:1200 / 1213
页数:14
相关论文
共 50 条
  • [1] Rhizospheric Microbiome Responses to Cover Crop Suppression Methods
    Morales, Marianela E.
    Allegrini, Marco
    Iocoli, Gaston A.
    Basualdo, Jessica
    Villamil, Maria B.
    Zabaloy, Maria C.
    AGRONOMY-BASEL, 2022, 12 (10):
  • [2] Microbiome: diversity, distribution, and potential role in sustainable crop production
    Fernando, W. G. D.
    Dolatabadian, A.
    JOURNAL OF THE NATIONAL SCIENCE FOUNDATION OF SRI LANKA, 2022, 50 : 231 - 250
  • [3] Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production
    Kumar, Ashwani
    Dubey, Anamika
    JOURNAL OF ADVANCED RESEARCH, 2020, 24 : 337 - 352
  • [4] The Microbiome on the Leaves of Crop Plants
    Kucharska, Katarzyna
    Wachowska, Urszula
    POSTEPY MIKROBIOLOGII, 2014, 53 (04): : 352 - 359
  • [5] Unveiling the Wheat Microbiome under Varied Agricultural Field Conditions
    Jaiswal, Sarika
    Aneja, Bharti
    Jagannadham, Jaisri
    Pandey, Bharati
    Chhokar, Rajender Singh
    Gill, Subhash Chander
    Ahlawat, Om Parkash
    Kumar, Anuj
    Angadi, U. B.
    Rai, Anil
    Tiwari, Ratan
    Iquebal, Mir Asif
    Kumar, Dinesh
    MICROBIOLOGY SPECTRUM, 2022, 10 (06):
  • [6] Integrating nanotechnology with plant microbiome for next-generation crop health
    Hussain, Muzammil
    Zahra, Nosheen
    Lang, Tao
    Zain, Muhammad
    Raza, Mubashar
    Shakoor, Noman
    Adeel, Muhammad
    Zhou, Haichao
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 196 : 703 - 711
  • [7] Polyaspartic acid facilitated rice production by reshaping soil microbiome
    Liu, Tai
    Wei, Jing
    Yang, Jinhui
    Wang, Hongyuan
    Wu, Baolong
    He, Pengcheng
    Wang, Yulong
    Liu, Hongbin
    APPLIED SOIL ECOLOGY, 2023, 191
  • [8] Rhizosphere Microbiome Cooperations: Strategies for Sustainable Crop Production
    Babalola, Olubukola O.
    Emmanuel, Obianuju C.
    Adeleke, Bartholomew S.
    Odelade, Kehinde A.
    Nwachukwu, Blessing C.
    Ayiti, Oluwatobi E.
    Adegboyega, Taofeek T.
    Igiehon, Nicholas O.
    CURRENT MICROBIOLOGY, 2021, 78 (04) : 1069 - 1085
  • [9] Towards defining the core Saccharum microbiome: input from five genotypes
    Ishida, Juliane K.
    Bini, Andressa P.
    Creste, Silvana
    Van Sluys, Marie-Anne
    BMC MICROBIOLOGY, 2022, 22 (01)
  • [10] Defining the core microbiome of the symbiotic dinoflagellate, Symbiodinium
    Lawson, Caitlin A.
    Raina, Jean-Baptiste
    Kahlke, Tim
    Seymour, Justin R.
    Suggett, David J.
    ENVIRONMENTAL MICROBIOLOGY REPORTS, 2018, 10 (01): : 7 - 11