Coleman-Gross height pairings and the p-adic sigma function

被引:16
作者
Balakrishnan, Jennifer S. [1 ]
Besser, Amnon [2 ,3 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[3] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2015年 / 698卷
基金
美国国家科学基金会; 以色列科学基金会;
关键词
ELLIPTIC-CURVES; INTEGRATION;
D O I
10.1515/crelle-2012-0095
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a direct proof that the Mazur-Tate and Coleman-Gross heights on elliptic curves coincide. The main ingredient is to extend the Coleman-Gross height to the case of divisors with non-disjoint support and, doing some p-adic analysis, show that, in particular, its component above p gives, in the special case of an ordinary elliptic curve, the p-adic sigma function. We use this result to give a short proof of a theorem of Kim characterizing integral points on elliptic curves in some cases under weaker assumptions. As a further application, we give new formulas to compute double Coleman integrals from tangential basepoints.
引用
收藏
页码:89 / 104
页数:16
相关论文
共 20 条
[1]  
Balakrishnan J. S., 2013, ALGORITHMIC NUMBER T
[2]   Computing Local p-adic Height Pairings on Hyperelliptic Curves [J].
Balakrishnan, Jennifer S. ;
Besser, Amnon .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (11) :2405-2444
[3]   MASSEY PRODUCTS FOR ELLIPTIC CURVES OF RANK 1 (vol 23, pg 725, 2010) [J].
Balakrishnan, Jennifer S. ;
Kedlaya, Kiran S. ;
Kim, Minhyong .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (01) :281-291
[4]  
Besser A, 2004, CRM PROC & LECT NOTE, V36, P13
[5]   p-adic Arakelov theory [J].
Besser, A .
JOURNAL OF NUMBER THEORY, 2005, 111 (02) :318-371
[6]   Coleman integration using the Tannakian formalism [J].
Besser, A .
MATHEMATISCHE ANNALEN, 2002, 322 (01) :19-48
[7]  
Besser A, 2006, CONTEMP MATH, V416, P9
[8]   THE SYNTOMIC REGULATOR FOR K4 OF CURVES [J].
Besser, Amnon ;
de Jeu, Rob .
PACIFIC JOURNAL OF MATHEMATICS, 2012, 260 (02) :305-380
[9]  
Coleman R.F., 1989, Algebraic number theory, Adv. Stud. Pure Math., V17, P73
[10]   THE UNIVERSAL VECTORIAL BI-EXTENSION AND P-ADIC HEIGHTS [J].
COLEMAN, RF .
INVENTIONES MATHEMATICAE, 1991, 103 (03) :631-650