Coleman-Gross height pairings and the p-adic sigma function

被引:16
|
作者
Balakrishnan, Jennifer S. [1 ]
Besser, Amnon [2 ,3 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[3] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
基金
以色列科学基金会; 美国国家科学基金会;
关键词
ELLIPTIC-CURVES; INTEGRATION;
D O I
10.1515/crelle-2012-0095
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a direct proof that the Mazur-Tate and Coleman-Gross heights on elliptic curves coincide. The main ingredient is to extend the Coleman-Gross height to the case of divisors with non-disjoint support and, doing some p-adic analysis, show that, in particular, its component above p gives, in the special case of an ordinary elliptic curve, the p-adic sigma function. We use this result to give a short proof of a theorem of Kim characterizing integral points on elliptic curves in some cases under weaker assumptions. As a further application, we give new formulas to compute double Coleman integrals from tangential basepoints.
引用
收藏
页码:89 / 104
页数:16
相关论文
共 50 条