Power-law decay of weights and recurrence of the two-dimensional VRJP

被引:3
|
作者
Kozma, Gady [1 ]
Peled, Ron [2 ]
机构
[1] Weizmann Inst Sci, Dept Math & Comp Sci, IL-76100 Rehovot, Israel
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2021年 / 26卷
基金
欧洲研究理事会; 以色列科学基金会;
关键词
Vertex-reinforced jump process; random walk in random environment; decay of correlations; supersymmetry; LOCALIZATION; MODEL;
D O I
10.1214/21-EJP639
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The vertex-reinforced jump process (VRJP) is a form of self-interacting random walk in which the walker is biased towards returning to previously visited vertices with the bias depending linearly on the local time at these vertices. We prove that, for any initial bias, the weights sampled from the magic formula on a two-dimensional graph decay at least at a power-law rate. Via arguments of Sabot and Zeng, the result implies that the VRJP is recurrent in two dimensions for any initial bias.
引用
收藏
页数:19
相关论文
共 44 条
  • [1] Bifurcation analysis for a two-dimensional peristaltic driven flow of power-law fluid in asymmetric channel
    Ali, Nasir
    Ullah, Kaleem
    Rasool, Husnain
    PHYSICS OF FLUIDS, 2020, 32 (07)
  • [2] Transitions of power-law fluids in two-dimensional lid-driven cavity flow using lattice Boltzmann method
    Zhang Heng
    Ren Feng
    Hu Hai-Bao
    ACTA PHYSICA SINICA, 2021, 70 (18)
  • [3] Power-law decay exponents: A dynamical criterion for predicting thermalization
    Tavora, Marco
    Torres-Herrera, E. J.
    Santos, Lea F.
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [4] One-Dimensional Quasicrystals with Power-Law Hopping
    Deng, X.
    Ray, S.
    Sinha, S.
    Shlyapnikov, G., V
    Santos, L.
    PHYSICAL REVIEW LETTERS, 2019, 123 (02)
  • [5] Simulation of Power-Law Fluid Flows in Two-Dimensional Square Cavity Using Multi-Relaxation-Time Lattice Boltzmann Method
    Li, Qiuxiang
    Hong, Ning
    Shi, Baochang
    Chai, Zhenhua
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (01) : 265 - 284
  • [6] Power-law decay of correlations after a global quench in the massive XXZ chain
    Ramos, Flavia B.
    Urichuk, Andrew
    Schneider, Imke
    Sirker, Jesko
    PHYSICAL REVIEW B, 2023, 107 (07)
  • [7] Enhanced transport of two interacting quantum walkers in a one-dimensional quasicrystal with power-law hopping
    Dominguez-Castro, G. A.
    Paredes, R.
    PHYSICAL REVIEW A, 2021, 104 (03)
  • [8] Bose Polaron in a One-Dimensional Lattice with Power-Law Hopping
    Dominguez-Castro, G. A.
    ATOMS, 2023, 11 (08)
  • [9] A generalized power-law scaling law for a two-phase imbibition in a porous medium
    El-Amin, M. F.
    Salama, Amgad
    Sun, Shuyu
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2013, 111 : 159 - 169
  • [10] Statistical properties of one-dimensional binary sequences with power-law power spectrum
    Gong, Longyan
    Zhou, Zicong
    Tong, Peiqing
    Zhao, Shengmei
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (17) : 2977 - 2986