Learning with Noisy Labels via Sparse Regularization

被引:47
作者
Zhou, Xiong [1 ,2 ]
Liu, Xianming [1 ,2 ]
Wang, Chenyang [1 ]
Zhai, Deming [1 ]
Jiang, Junjun [1 ,2 ]
Ji, Xiangyang [3 ]
机构
[1] Harbin Inst Technol, Harbin, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Tsinghua Univ, Beijing, Peoples R China
来源
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021) | 2021年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/ICCV48922.2021.00014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning with noisy labels is an important and challenging task for training accurate deep neural networks. Some commonly-used loss functions, such as Cross Entropy (CE), suffer from severe overfitting to noisy labels. Robust loss functions that satisfy the symmetric condition were tailored to remedy this problem, which however encounter the underfitting effect. In this paper, we theoretically prove that any loss can be made robust to noisy labels by restricting the network output to the set of permutations over a fixed vector. When the fixed vector is one-hot, we only need to constrain the output to be one-hot, which however produces zero gradients almost everywhere and thus makes gradient-based optimization difficult. In this work, we introduce the sparse regularization strategy to approximate the one-hot constraint, which is composed of network output sharpening operation that enforces the output distribution of a network to be sharp and the l(p)-norm (p <= 1) regularization that promotes the network output to be sparse. This simple approach guarantees the robustness of arbitrary loss functions while not hindering the fitting ability. Experimental results demonstrate that our method can significantly improve the performance of commonly-used loss functions in the presence of noisy labels and class imbalance, and outperform the state-of-the-art methods. The code is available at https://github.com/hitcszx/lnl_sr.
引用
收藏
页码:72 / 81
页数:10
相关论文
共 31 条
  • [1] [Anonymous], 2018, PR MACH LEARN RES
  • [2] Arpit D, 2017, PR MACH LEARN RES, V70
  • [3] A systematic study of the class imbalance problem in convolutional neural networks
    Buda, Mateusz
    Maki, Atsuto
    Mazurowski, Maciej A.
    [J]. NEURAL NETWORKS, 2018, 106 : 249 - 259
  • [4] Charoenphakdee N, 2019, PR MACH LEARN RES, V97
  • [5] Class-Balanced Loss Based on Effective Number of Samples
    Cui, Yin
    Jia, Menglin
    Lin, Tsung-Yi
    Song, Yang
    Belongie, Serge
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9260 - 9269
  • [6] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [7] Ghosh A, 2017, AAAI CONF ARTIF INTE, P1919
  • [8] Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
  • [9] Han B, 2020, ARXIV ABS201104406
  • [10] Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
    Han, Bo
    Yao, Quanming
    Yu, Xingrui
    Niu, Gang
    Xu, Miao
    Hu, Weihua
    Tsang, Ivor W.
    Sugiyama, Masashi
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31