Construction of a Stable Ru-Re Hybrid System Based on Multifunctional MOF-253 for Efficient Photocatalytic CO2 Reduction

被引:104
作者
Deng, Xiaoyu [1 ]
Albero, Josep [2 ]
Xu, Lizhi [1 ]
Garcia, Hermenegildo [2 ]
Li, Zhaohui [1 ]
机构
[1] Fuzhou Univ, Coll Chem, Res Inst Photocatalysis, State Key Lab Photocatalysis Energy & Environm, Fuzhou 350116, Fujian, Peoples R China
[2] Univ Politecn Valencia, Inst Tecnol Quim, CSIC, Ave Naranjos S-N, E-46022 Valencia, Spain
关键词
METAL-ORGANIC FRAMEWORK; CARBON-DIOXIDE; PHOTOELECTROCHEMICAL REDUCTION; MOLECULAR-SYSTEMS; WATER OXIDATION; COMPLEXES; CONVERSION; CATALYSIS; MOF; NANOPARTICLES;
D O I
10.1021/acs.inorgchem.8b00896
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Using the open N,N'-chelating sites of MOF-253 (Al(OH)(dcbpy), dcbpy = 2,2'-bipyridine-5,5'-dicarboxylic acid) to coordinate with Re(I), a linker anchored Re complex MOF-253-Re(CO)(3)Cl active for photocatalytic CO2 reduction was obtained. Unlike the homogeneous bipyridine containing Re complexes which produce CO during photocatalytic CO2 reduction, formate was obtained as the main CO, reduction product over the as-obtained MOF-253-Re(CO)(3)Cl. The linker anchored MOF-253-Re(CO)(3)Cl showed superior photocatalytic performance compared to its homogeneous counterpart since the usual formation of the bimolecular Re intermediate leading to the deactivation of the homogeneous Re complex was significantly inhibited in the MOF supported Re complex. To enhance its light absorption, a linker anchored Ru sensitizer was simultaneously constructed in MOF-253-Re(CO)(3)Cl (Ru-MOF-253-Re). The total TON (TON is defined as mole of the evolved H-2, CO, and HCOO- over per amount of Rhenium) for CO2 reduction (28.8 in 4 h) over the as-obtained Ru-MOF-253-Re system is comparable or even superior to most already reported Re carbonyl complexes featuring bpy ligands and the Ru-Re bimetallic supramolecular systems constructed via the covalent bond under similar reaction conditions. The enhanced photocatalytic CO2 reduction over the Ru-MOF-253-Re can be ascribed to the improved visible light absorption and the existence of an efficient photoinduced charge transfer from Ru sensitizer to Re catalytic center, as evidenced from the transient absorption studies. The use of MOF-253 as a metalloligand and support to assemble the Ru-Re system as well as a mediator to promote the charge transfer from Ru sensitizer to Re catalytic center resembles the construction of Ru-Re supramolecular structures using covalent bonds, but is more facile in preparation and provides more flexibility. This study demonstrates the possibility of using MOFs with open coordination sites as a platform for the construction of a stable multifunctional hybrid system for artificial photosynthesis.
引用
收藏
页码:8276 / 8286
页数:11
相关论文
共 61 条
[1]   Mechanisms for CO Production from CO2 Using Reduced Rhenium Tricarbonyl Catalysts [J].
Agarwal, Jay ;
Fujita, Etsuko ;
Schaefer, Henry F., III ;
Muckerman, James T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (11) :5180-5186
[2]   Semiconductor behavior of a metal-organic framework (MOF) [J].
Alvaro, Mercedes ;
Carbonell, Esther ;
Ferrer, Belen ;
Llabres i Xamena, Francesc X. ;
Garcia, Hermenegildo .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (18) :5106-5112
[3]   Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2 [J].
Aresta, Michele ;
Dibenedetto, Angela ;
Angelini, Antonella .
CHEMICAL REVIEWS, 2014, 114 (03) :1709-1742
[4]   Easy Access to Amides through Aldehydic C-H Bond Functionalization Catalyzed by Heterogeneous Co-Based Catalysts [J].
Bai, Cuihua ;
Yao, Xianfang ;
Li, Yingwei .
ACS CATALYSIS, 2015, 5 (02) :884-891
[5]   Metal Insertion in a Microporous Metal-Organic Framework Lined with 2,2′-Bipyridine [J].
Bloch, Eric D. ;
Britt, David ;
Lee, Chain ;
Doonan, Christian J. ;
Uribe-Romo, Fernando J. ;
Furukawa, Hiroyasu ;
Long, Jeffrey R. ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (41) :14382-14384
[6]   Metal-organic frameworks (MOFs) for photocatalytic CO2 reduction [J].
Chen, Yi ;
Wang, Dengke ;
Deng, Xiaoyu ;
Li, Zhaohui .
CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (21) :4893-4904
[7]   A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation [J].
Cho, So-Hye ;
Ma, Baoqing ;
Nguyen, SonBinh T. ;
Hupp, Joseph T. ;
Albrecht-Schmitt, Thomas E. .
CHEMICAL COMMUNICATIONS, 2006, (24) :2563-2565
[8]   Engineering Metal Organic Frameworks for Heterogeneous Catalysis [J].
Corma, A. ;
Garcia, H. ;
Llabres i Xamena, F. X. L. I. .
CHEMICAL REVIEWS, 2010, 110 (08) :4606-4655
[9]  
Dean J.A., 2001, Lange's Handbook of Chemistry, V15
[10]   Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs) [J].
Deng, Xiaoyu ;
Li, Zhaohui ;
Garcia, Hermenegildo .
CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (47) :11189-11209