A posteriori error analysis of the time-dependent Stokes equations with mixed boundary conditions

被引:16
作者
Bernardi, Christine [1 ,2 ]
Sayah, Toni
机构
[1] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[2] Univ Paris 06, F-75252 Paris 05, France
关键词
Stokes equations; mixed boundary conditions; finite element method; a posteriori analysis; VORTICITY-VELOCITY-PRESSURE; DOMAINS;
D O I
10.1093/imanum/drt067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the time-dependent Stokes problem with mixed boundary conditions. The problem is discretized by the backward Euler's scheme in time and finite elements in space. We establish an optimal a posteriori error with two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization.
引用
收藏
页码:179 / 198
页数:20
相关论文
共 18 条
[1]   A priori and a posteriori estimates for three-dimensional Stokes equations with nonstandard boundary conditions [J].
Abboud, Hyam ;
El Chami, Fida ;
Sayah, Toni .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (04) :1178-1193
[2]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[3]  
2-B
[4]   Error indicators for the mortar finite element discretization of a parabolic problem [J].
Bergam, A ;
Bernardi, C ;
Hecht, F ;
Mghazli, Z .
NUMERICAL ALGORITHMS, 2003, 34 (2-4) :187-201
[5]   Time and space adaptivity for the second-order wave equation [J].
Bernardi, C ;
Süli, E .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (02) :199-225
[6]   A posteriori error analysis of the fully discretized time-dependent Stokes equations [J].
Bernardi, C ;
Werfürth, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (03) :437-455
[7]  
Bernardi C., 2009, ESAIM-MATH MODEL NUM, V3, P1185
[8]  
Bernardi C., DISCRETISATIONS VARI, V45
[9]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[10]   A REMARK ON THE REGULARITY OF SOLUTIONS OF MAXWELL EQUATIONS ON LIPSCHITZ-DOMAINS [J].
COSTABEL, M .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (04) :365-368