Real Paley-Wiener theorems in spaces of ultradifferentiable functions

被引:22
作者
Boiti, Chiara [1 ]
Jornet, David [2 ]
Oliaro, Alessandro [3 ]
机构
[1] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 30, I-44121 Ferrara, Italy
[2] Univ Politecn Valencia, IUMPA, Camino Vera S-N, E-46071 Valencia, Spain
[3] Univ Turin, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Real Paley-Wiener theorems; Weighted Schwartz classes; Short-time Fourier transform; Wigner transform; PARTIAL-DIFFERENTIAL OPERATORS;
D O I
10.1016/j.jfa.2019.108348
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop real Paley-Wiener theorems for classes S-omega of ultradifferentiable functions and related L-p-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor transform and give a full characterization in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in this general setting, which is new in the literature. We also analyze this type of results when the support of the function is not compact using polynomials. Some examples are given. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:45
相关论文
共 25 条
[1]   Real Paley-Wiener theorems [J].
Andersen, NB .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :504-508
[2]   Entire LP-functions of exponential type [J].
Andersen, Nils Byrial .
EXPOSITIONES MATHEMATICAE, 2014, 32 (03) :199-220
[3]   REAL PALEY-WIENER THEOREMS AND LOCAL SPECTRAL RADIUS FORMULAS [J].
Andersen, Nils Byrial ;
de Jeu, Marcel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (07) :3613-3640
[4]  
[Anonymous], 1993, LINEAR PARTIAL DIFFE, DOI DOI 10.1142/1550
[5]  
[Anonymous], 1994, PROGR MATH
[7]   LINEAR PARTIAL DIFFERENTIAL OPERATORS AND GENERALIZED DISTRIBUTIONS [J].
BJORCK, G .
ARKIV FOR MATEMATIK, 1966, 6 (4-5) :351-&
[8]   Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients [J].
Boiti, C. ;
Jornet, D. ;
Juan-Huguet, J. .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[9]   The Gabor wave front set in spaces of ultradifferentiable functions [J].
Boiti, Chiara ;
Jornet, David ;
Oliaro, Alessandro .
MONATSHEFTE FUR MATHEMATIK, 2019, 188 (02) :199-246
[10]  
Boiti C, 2018, MANUSCRIPTA MATH, V155, P419, DOI 10.1007/s00229-017-0939-2