Chromosome boundary elements and regulation of heterochromatin spreading

被引:54
作者
Wang, Jiyong [1 ]
Lawry, Stephanie T. [1 ]
Cohen, Allison L. [1 ]
Jia, Songtao [1 ]
机构
[1] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
关键词
Boundary element; Heterochromatin; Spreading; Histone modifications; Silencing; H3; LYSINE-9; METHYLATION; HISTONE METHYLTRANSFERASE ACTIVITY; SILENCING PROTEIN SIR2; RNA-POLYMERASE-II; FISSION YEAST; SACCHAROMYCES-CEREVISIAE; EPIGENETIC CONTROL; TELOMERIC HETEROCHROMATIN; CHROMATIN-STRUCTURE; DNA-REPLICATION;
D O I
10.1007/s00018-014-1725-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chromatin is generally classified as euchromatin or heterochromatin, each with distinct histone modifications, compaction levels, and gene expression patterns. Although the proper formation of heterochromatin is essential for maintaining genome integrity and regulating gene expression, heterochromatin can also spread into neighboring regions in a sequence-independent manner, leading to the inactivation of genes. Because the distance of heterochromatin spreading is stochastic, the formation of boundaries, which block the spreading of heterochromatin, is critical for maintaining stable gene expression patterns. Here we review the current understanding of the mechanisms underlying heterochromatin spreading and boundary formation.
引用
收藏
页码:4841 / 4852
页数:12
相关论文
共 156 条
  • [1] Division of Labor between the Chromodomains of HP1 and Suv39 Methylase Enables Coordination of Heterochromatin Spread
    Al-Sady, Bassem
    Madhani, Hiten D.
    Narlikar, Geeta J.
    [J]. MOLECULAR CELL, 2013, 51 (01) : 80 - 91
  • [2] HDAC-mediated suppression of histone turnover promotes epigenetic stability of heterochromatin
    Ayguen, Ozan
    Mehta, Sameet
    Grewal, Shiv I. S.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (05) : 547 - +
  • [3] Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain
    Bannister, AJ
    Zegerman, P
    Partridge, JF
    Miska, EA
    Thomas, JO
    Allshire, RC
    Kouzarides, T
    [J]. NATURE, 2001, 410 (6824) : 120 - 124
  • [4] High-resolution profiling of histone methylations in the human genome
    Barski, Artern
    Cuddapah, Suresh
    Cui, Kairong
    Roh, Tae-Young
    Schones, Dustin E.
    Wang, Zhibin
    Wei, Gang
    Chepelev, Iouri
    Zhao, Keji
    [J]. CELL, 2007, 129 (04) : 823 - 837
  • [5] Genomic patterns and context specific interpretation of DNA methylation
    Baubec, Tuncay
    Schuebeler, Dirk
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2014, 25 : 85 - 92
  • [6] Stc1: A Critical Link between RNAi and Chromatin Modification Required for Heterochromatin Integrity
    Bayne, Elizabeth H.
    White, Sharon A.
    Kagansky, Alexander
    Bijos, Dominika A.
    Sanchez-Pulido, Luis
    Hoe, Kwang-Lae
    Kim, Dong-Uk
    Park, Han-Oh
    Ponting, Chris P.
    Rappsilber, Juri
    Allshire, Robin C.
    [J]. CELL, 2010, 140 (05) : 666 - 677
  • [7] YEAST ORIGIN RECOGNITION COMPLEX FUNCTIONS IN TRANSCRIPTION SILENCING AND DNA-REPLICATION
    BELL, SP
    KOBAYASHI, R
    STILLMAN, B
    [J]. SCIENCE, 1993, 262 (5141) : 1844 - 1849
  • [8] Formation of boundaries of transcriptionally silent chromatin by nucleosome-excluding structures
    Bi, X
    Yu, Q
    Sandmeier, JJ
    Zou, YF
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (05) : 2118 - 2131
  • [9] UASrpg can function as a heterochromatin boundary element in yeast
    Bi, X
    Broach, JR
    [J]. GENES & DEVELOPMENT, 1999, 13 (09) : 1089 - 1101
  • [10] Limiting the Extent of the RDN1 Heterochromatin Domain by a Silencing Barrier and Sir2 Protein Levels in Saccharomyces cerevisiae
    Biswas, Moumita
    Maqani, Nazif
    Rai, Ragini
    Kumaran, Srikala P.
    Iyer, Kavitha R.
    Sendinc, Erdem
    Smith, Jeffrey S.
    Laloraya, Shikha
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2009, 29 (10) : 2889 - 2898