Motion correction and volumetric reconstruction for fetal functional magnetic resonance imaging data

被引:13
作者
Sobotka, Daniel [1 ]
Ebner, Michael [3 ]
Schwartz, Ernst [1 ]
Nenning, Karl-Heinz [1 ,4 ]
Taymourtash, Athena [1 ]
Vercauteren, Tom [3 ]
Ourselin, Sebastien [3 ]
Kasprian, Gregor [2 ]
Prayer, Daniela [2 ]
Langs, Georg [1 ]
Licandro, Roxane [1 ,5 ,6 ]
机构
[1] Med Univ Vienna, Dept Biomed Imaging & Image guided Therapy, Computat Imaging Res Lab, Vienna, Austria
[2] Med Univ Vienna, Dept Biomed Imaging & Image guided Therapy, Div Neuroradiol & Musculoskeletal Radiol, Vienna, Austria
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[4] Nathan S Kline Inst Psychiat Res, Ctr Biomed Imaging & Neuromodulat, Orangeburg, NY USA
[5] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Lab Computat Neuroimaging, Charlestown, MA USA
[6] Harvard Med Sch, Charlestown, MA USA
基金
欧盟地平线“2020”; 奥地利科学基金会; 英国惠康基金; 英国工程与自然科学研究理事会;
关键词
Fetal fMRI; Motion correction; Regularization; Functional connectivity; IN-UTERO; BRAIN; CONNECTIVITY; FMRI; ROBUST; MRI; CORTEX; REGISTRATION; ARTIFACTS; FRAMEWORK;
D O I
10.1016/j.neuroimage.2022.119213
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Motion correction is an essential preprocessing step in functional Magnetic Resonance Imaging (fMRI) of the fetal brain with the aim to remove artifacts caused by fetal movement and maternal breathing and consequently to suppress erroneous signal correlations. Current motion correction approaches for fetal fMRI choose a single 3D volume from a specific acquisition timepoint with least motion artefacts as reference volume, and perform interpolation for the reconstruction of the motion corrected time series. The results can suffer, if no low-motion frame is available, and if reconstruction does not exploit any assumptions about the continuity of the fMRI signal. Here, we propose a novel framework, which estimates a high-resolution reference volume by using outlier robust motion correction, and by utilizing Huber L2 regularization for intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI. We performed an extensive parameter study to investigate the effectiveness of motion estimation and present in this work benchmark metrics to quantify the effect of motion correction and regularised volumetric reconstruction approaches on functional connectivity computations. We demonstrate the proposed framework's ability to improve functional connectivity estimates, reproducibility and signal interpretability, which is clinically highly desirable for the establishment of prognostic noninvasive imaging biomarkers. The motion correction and volumetric reconstruction framework is made available as an open-source package of NiftyMIC.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Functional Magnetic Resonance Imaging
    Shah, Lubdha M.
    Anderson, Jeffrey S.
    Lee, James N.
    Wiggins, Richard, III
    [J]. SEMINARS IN ROENTGENOLOGY, 2010, 45 (02) : 147 - 156
  • [32] A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data
    Mayer, Andrew R.
    Ling, Josef M.
    Dodd, Andrew B.
    Shaff, Nicholas A.
    Wertz, Christopher J.
    Hanlon, Faith M.
    [J]. HUMAN BRAIN MAPPING, 2019, 40 (13) : 3843 - 3859
  • [33] SACICA: A sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis
    Wang, Nizhuan
    Zeng, Weiming
    Chen, Lei
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2013, 216 (01) : 49 - 61
  • [34] Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points
    Siegel, Joshua S.
    Power, Jonathan D.
    Dubis, Joseph W.
    Vogel, Alecia C.
    Church, Jessica A.
    Schlaggar, Bradley L.
    Petersen, Steven E.
    [J]. HUMAN BRAIN MAPPING, 2014, 35 (05) : 1981 - 1996
  • [35] Integrated radiofrequency array and animal holder design for minimizing head motion during awake marmoset functional magnetic resonance imaging
    Schaeffer, David J.
    Gilbert, Kyle M.
    Hori, Yuki
    Gati, Joseph S.
    Menon, Ravi S.
    Everling, Stefan
    [J]. NEUROIMAGE, 2019, 193 : 126 - 138
  • [36] ADAPTIVE FILTERING AND RANDOM VARIABLES COEFFICIENT FOR ANALYZING FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA
    Piaggi, Paolo
    Menicucci, Danilo
    Gentili, Claudio
    Handjaras, Giacomo
    Gemignani, Angelo
    Landi, Alberto
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2013, 23 (03)
  • [37] Adaptive bulk motion exclusion for improved robustness of abdominal magnetic resonance imaging
    Stemkens, Bjorn
    Benkert, Thomas
    Chandarana, Hersh
    Bittman, Mark E.
    Van den Berg, Cornelis A. T.
    Lagendijk, Jan J. W.
    Sodickson, Daniel K.
    Tijssen, Rob H. N.
    Block, Kai Tobias
    [J]. NMR IN BIOMEDICINE, 2017, 30 (11)
  • [38] 3DBGrowth: volumetric vertebrae segmentation and reconstruction in magnetic resonance imaging
    Ramos, Jonathan S.
    Cazzolato, Mirela T.
    Faical, Bruno S.
    Nogueira-Barbosa, Marcello H.
    Traina, Caetano, Jr.
    Traina, Agma J. M.
    [J]. 2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, : 435 - 440
  • [39] Functional magnetic resonance imaging outcomes from a comprehensive magnetic resonance study of children with fetal alcohol spectrum disorders
    Astley, Susan J.
    Aylward, Elizabeth H.
    Olson, Heather Carmichael
    Kerns, Kimberly
    Brooks, Allison
    Coggins, Truman E.
    Davies, Julian
    Dorn, Susan
    Gendler, Beth
    Jirikowic, Tracy
    Kraegel, Paul
    Maravilla, Kenneth
    Richards, Todd
    [J]. JOURNAL OF NEURODEVELOPMENTAL DISORDERS, 2009, 1 (01) : 61 - 80
  • [40] Fetal magnetic resonance imaging: indications, study protocols and safety
    Triulzi, F.
    Manganaro, L.
    Volpe, P.
    [J]. RADIOLOGIA MEDICA, 2011, 116 (03): : 337 - 350