Motion correction and volumetric reconstruction for fetal functional magnetic resonance imaging data

被引:16
作者
Sobotka, Daniel [1 ]
Ebner, Michael [3 ]
Schwartz, Ernst [1 ]
Nenning, Karl-Heinz [1 ,4 ]
Taymourtash, Athena [1 ]
Vercauteren, Tom [3 ]
Ourselin, Sebastien [3 ]
Kasprian, Gregor [2 ]
Prayer, Daniela [2 ]
Langs, Georg [1 ]
Licandro, Roxane [1 ,5 ,6 ]
机构
[1] Med Univ Vienna, Dept Biomed Imaging & Image guided Therapy, Computat Imaging Res Lab, Vienna, Austria
[2] Med Univ Vienna, Dept Biomed Imaging & Image guided Therapy, Div Neuroradiol & Musculoskeletal Radiol, Vienna, Austria
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[4] Nathan S Kline Inst Psychiat Res, Ctr Biomed Imaging & Neuromodulat, Orangeburg, NY USA
[5] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Lab Computat Neuroimaging, Charlestown, MA USA
[6] Harvard Med Sch, Charlestown, MA USA
基金
欧盟地平线“2020”; 奥地利科学基金会; 英国工程与自然科学研究理事会; 英国惠康基金;
关键词
Fetal fMRI; Motion correction; Regularization; Functional connectivity; IN-UTERO; BRAIN; CONNECTIVITY; FMRI; ROBUST; MRI; CORTEX; REGISTRATION; ARTIFACTS; FRAMEWORK;
D O I
10.1016/j.neuroimage.2022.119213
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Motion correction is an essential preprocessing step in functional Magnetic Resonance Imaging (fMRI) of the fetal brain with the aim to remove artifacts caused by fetal movement and maternal breathing and consequently to suppress erroneous signal correlations. Current motion correction approaches for fetal fMRI choose a single 3D volume from a specific acquisition timepoint with least motion artefacts as reference volume, and perform interpolation for the reconstruction of the motion corrected time series. The results can suffer, if no low-motion frame is available, and if reconstruction does not exploit any assumptions about the continuity of the fMRI signal. Here, we propose a novel framework, which estimates a high-resolution reference volume by using outlier robust motion correction, and by utilizing Huber L2 regularization for intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI. We performed an extensive parameter study to investigate the effectiveness of motion estimation and present in this work benchmark metrics to quantify the effect of motion correction and regularised volumetric reconstruction approaches on functional connectivity computations. We demonstrate the proposed framework's ability to improve functional connectivity estimates, reproducibility and signal interpretability, which is clinically highly desirable for the establishment of prognostic noninvasive imaging biomarkers. The motion correction and volumetric reconstruction framework is made available as an open-source package of NiftyMIC.
引用
收藏
页数:13
相关论文
共 50 条
[21]   Quantitative Assessment of Head Motion toward Functional Magnetic Resonance Imaging during Stepping [J].
Saotome, Kousaku ;
Matsushita, Akira ;
Nakai, Kei ;
Kadone, Hideki ;
Tsurushima, Hideo ;
Sankai, Yoshiyuki ;
Matsumura, Akira .
MAGNETIC RESONANCE IN MEDICAL SCIENCES, 2016, 15 (03) :273-280
[22]   Functional magnetic resonance imaging using PROPELLER-EPI [J].
Kraemer, Martin ;
Jochimsen, Thies H. ;
Reichenbach, Juergen R. .
MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (01) :140-151
[23]   A volumetric magnetic resonance imaging study in migraine [J].
Naguib, Laila Elmously ;
Azim, Ghada Saed Abdel ;
Abdellatif, Mohammed Abdelrazek .
EGYPTIAN JOURNAL OF NEUROLOGY PSYCHIATRY AND NEUROSURGERY, 2021, 57 (01)
[24]   Body mass index associated with respiration predicts motion in resting-state functional magnetic resonance imaging scans [J].
Huang, Shishi ;
Vigotsky, Andrew D. ;
Apkarian, Apkar Vania ;
Huang, Lejian .
HUMAN BRAIN MAPPING, 2024, 45 (13)
[25]   Measurement and Correction of Microscopic Head Motion during Magnetic Resonance Imaging of the Brain [J].
Maclaren, Julian ;
Armstrong, Brian S. R. ;
Barrows, Robert T. ;
Danishad, K. A. ;
Ernst, Thomas ;
Foster, Colin L. ;
Gumus, Kazim ;
Herbst, Michael ;
Kadashevich, Ilja Y. ;
Kusik, Todd P. ;
Li, Qiaotian ;
Lovell-Smith, Cris ;
Prieto, Thomas ;
Schulze, Peter ;
Speck, Oliver ;
Stucht, Daniel ;
Zaitsev, Maxim .
PLOS ONE, 2012, 7 (11)
[26]   Magnetic Resonance-Based Motion Correction for Positron Emission Tomography Imaging [J].
Ouyang, Jinsong ;
Li, Quanzheng ;
El Fakhri, Georges .
SEMINARS IN NUCLEAR MEDICINE, 2013, 43 (01) :60-67
[27]   Test-Retest Reproducibility of the Intrinsic Default Mode Network: Influence of Functional Magnetic Resonance Imaging Slice-Order Acquisition and Head-Motion Correction Methods [J].
Marchitelli, Rocco ;
Comignon, Olivier ;
Jovicich, Jorge .
BRAIN CONNECTIVITY, 2017, 7 (02) :69-83
[28]   Fetal cardiovascular magnetic resonance imaging [J].
Aguet, Julien ;
Seed, Mike ;
Marini, Davide .
PEDIATRIC RADIOLOGY, 2020, 50 (13) :1881-1894
[29]   Magnetic resonance imaging of the fetal brain [J].
Rutherford, Mary A. .
CURRENT OPINION IN OBSTETRICS & GYNECOLOGY, 2009, 21 (02) :180-186
[30]   Functional magnetic resonance imaging in anaesthesia research [J].
Pattinson, K. T. S. .
BRITISH JOURNAL OF ANAESTHESIA, 2013, 111 (06) :872-876