Motion correction and volumetric reconstruction for fetal functional magnetic resonance imaging data

被引:12
|
作者
Sobotka, Daniel [1 ]
Ebner, Michael [3 ]
Schwartz, Ernst [1 ]
Nenning, Karl-Heinz [1 ,4 ]
Taymourtash, Athena [1 ]
Vercauteren, Tom [3 ]
Ourselin, Sebastien [3 ]
Kasprian, Gregor [2 ]
Prayer, Daniela [2 ]
Langs, Georg [1 ]
Licandro, Roxane [1 ,5 ,6 ]
机构
[1] Med Univ Vienna, Dept Biomed Imaging & Image guided Therapy, Computat Imaging Res Lab, Vienna, Austria
[2] Med Univ Vienna, Dept Biomed Imaging & Image guided Therapy, Div Neuroradiol & Musculoskeletal Radiol, Vienna, Austria
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[4] Nathan S Kline Inst Psychiat Res, Ctr Biomed Imaging & Neuromodulat, Orangeburg, NY USA
[5] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Lab Computat Neuroimaging, Charlestown, MA USA
[6] Harvard Med Sch, Charlestown, MA USA
基金
奥地利科学基金会; 英国惠康基金; 欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
Fetal fMRI; Motion correction; Regularization; Functional connectivity; IN-UTERO; BRAIN; CONNECTIVITY; FMRI; ROBUST; MRI; CORTEX; REGISTRATION; ARTIFACTS; FRAMEWORK;
D O I
10.1016/j.neuroimage.2022.119213
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Motion correction is an essential preprocessing step in functional Magnetic Resonance Imaging (fMRI) of the fetal brain with the aim to remove artifacts caused by fetal movement and maternal breathing and consequently to suppress erroneous signal correlations. Current motion correction approaches for fetal fMRI choose a single 3D volume from a specific acquisition timepoint with least motion artefacts as reference volume, and perform interpolation for the reconstruction of the motion corrected time series. The results can suffer, if no low-motion frame is available, and if reconstruction does not exploit any assumptions about the continuity of the fMRI signal. Here, we propose a novel framework, which estimates a high-resolution reference volume by using outlier robust motion correction, and by utilizing Huber L2 regularization for intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI. We performed an extensive parameter study to investigate the effectiveness of motion estimation and present in this work benchmark metrics to quantify the effect of motion correction and regularised volumetric reconstruction approaches on functional connectivity computations. We demonstrate the proposed framework's ability to improve functional connectivity estimates, reproducibility and signal interpretability, which is clinically highly desirable for the establishment of prognostic noninvasive imaging biomarkers. The motion correction and volumetric reconstruction framework is made available as an open-source package of NiftyMIC.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Volumetric Fetal Flow Imaging With Magnetic Resonance Imaging
    Goolaub, Datta Singh
    Xu, Jiawei
    Schrauben, Eric M.
    Marini, Davide
    Kingdom, John C.
    Sled, John G.
    Seed, Mike
    Macgowan, Christopher K.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (10) : 2941 - 2952
  • [2] Motion-compensated reconstruction of magnetic resonance images from undersampled data
    Weller, Daniel S.
    Wang, Luonan
    Mugler, John P., III
    Meyer, Craig H.
    MAGNETIC RESONANCE IMAGING, 2019, 55 : 36 - 45
  • [3] Dissimilarity of functional connectivity uncovers the influence of participant's motion in functional magnetic resonance imaging studies
    Yang, Lili
    Wu, Bo
    Fan, Linyu
    Huang, Shishi
    Vigotsky, Andrew D.
    Baliki, Marwan N.
    Yan, Zhihan
    Apkarian, A. Vania
    Huang, Lejian
    HUMAN BRAIN MAPPING, 2021, 42 (03) : 713 - 723
  • [4] Prospective motion correction of high-resolution magnetic resonance imaging data in children
    Brown, Timothy T.
    Kuperman, Joshua M.
    Erhart, Matthew
    White, Nathan S.
    Roddey, J. Cooper
    Shankaranarayanan, Ajit
    Han, Eric T.
    Rettmann, Dan
    Dale, Anders M.
    NEUROIMAGE, 2010, 53 (01) : 139 - 145
  • [5] Motion correction of magnetic resonance imaging data by using adaptive moving least squares method
    Nam, Haewon
    Lee, Yeon Ju
    Jeong, Byeongseon
    Park, Hae-Jeong
    Yoon, Jungho
    MAGNETIC RESONANCE IMAGING, 2015, 33 (05) : 659 - 670
  • [6] Physiological noise reduction using volumetric functional magnetic resonance inverse imaging
    Lin, Fa-Hsuan
    Nummenmaa, Aapo
    Witzel, Thomas
    Polimeni, Jonathan R.
    Zeffiro, Thomas A.
    Wang, Fu-Nien
    Belliveau, John W.
    HUMAN BRAIN MAPPING, 2012, 33 (12) : 2815 - 2830
  • [7] Fetal Cardiac Functional Assessment by Fetal Heart Magnetic Resonance Imaging
    Tsuritani, Mitsuhiro
    Morita, Yoshiaki
    Miyoshi, Takekazu
    Kurosaki, Kenichi
    Yoshimatsu, Jun
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2019, 43 (01) : 104 - 108
  • [8] Cerebral biometry in fetal magnetic resonance imaging: new reference data
    Tilea, B.
    Alberti, C.
    Adamsbaum, C.
    Armoogum, P.
    Oury, J. F.
    Cabrol, D.
    Sebag, G.
    Kalifa, G.
    Garel, C.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2009, 33 (02) : 173 - 180
  • [9] Autofocusing plus : Noise-Resilient Motion Correction in Magnetic Resonance Imaging
    Kuzmina, Ekaterina
    Razumov, Artem
    Rogov, Oleg Y.
    Adalsteinsson, Elfar
    White, Jacob
    Dylov, Dmitry V.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI, 2022, 13436 : 365 - 375
  • [10] Deep Predictive Motion Tracking in Magnetic Resonance Imaging: Application to Fetal Imaging
    Singh, Ayush
    Salehi, Seyed Sadegh Mohseni
    Gholipour, Ali
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (11) : 3523 - 3534