Super-resolution microscopy with DNA-PAINT

被引:631
作者
Schnitzbauer, Joerg [1 ,2 ,3 ]
Strauss, Maximilian T. [1 ,2 ,3 ]
Schlichthaerle, Thomas [1 ,2 ,3 ]
Schueder, Florian [1 ,2 ,3 ]
Jungmann, Ralf [1 ,2 ,3 ]
机构
[1] Ludwig Maximilian Univ Munich, Dept Phys, Munich, Germany
[2] Ludwig Maximilian Univ Munich, Ctr Nanosci, Munich, Germany
[3] Max Planck Inst Biochem, Martinsried, Germany
基金
欧洲研究理事会;
关键词
SINGLE-MOLECULE LOCALIZATION; FLUORESCENCE MICROSCOPY; OPTICAL NANOSCOPY; HIGH-DENSITY; RESOLUTION; ORIGAMI; CELLS; PROTEINS; SHAPES; PROBES;
D O I
10.1038/nprot.2017.024
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Super-resolution techniques have begun to transform biological and biomedical research by allowing researchers to observe structures well below the classic diffraction limit of light. DNA points accumulation for imaging in nanoscale topography (DNA PAINT) offers an easy-to-implement approach to localization-based super-resolution microscopy, owing to the use of DNA probes. In DNA-PAINT, transient binding of short dye-labeled ('imager') oligonucleotides to their complementary target ('docking') strands creates the necessary 'blinking to enable stochastic super-resolution microscopy. Using the programmability and specificity of DNA molecules as imaging and labeling probes allows researchers to decouple blinking from dye photophysics, alleviating limitations of current super-resolution techniques, making them compatible with virtually any single-molecule-compatible dye. Recent developments in DNA-PAINT have enabled spectrally unlimited multiplexing, precise molecule counting and ultra-high, molecular scale (sub-5-nm) spatial resolution, reaching 1-nm localization precision. DNA-PAINT can be applied to a multitude of in vitro and cellular applications by linking docking strands to antibodies. Here, we present a protocol for the key aspects of the DNA PAINT framework for both novice and expert users. This protocol describes the creation of DNA origami test samples, in situ sample preparation, multiplexed data acquisition, data simulation, super-resolution image reconstruction and post-processing such as drift correction, molecule counting (qPAINT) and particle averaging. Moreover, we provide an integrated software package, named Picasso, for the computational steps involved. The protocol is designed to be modular, so that individual components can be chosen and implemented per requirements of a specific application. The procedure can be completed in 1-2 d.
引用
收藏
页码:1198 / 1228
页数:31
相关论文
共 83 条
[1]  
Agasti S., 2017, CHEM SCI
[2]   An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments [J].
Aitken, Colin Echeverria ;
Marshall, R. Andrew ;
Puglisi, Joseph D. .
BIOPHYSICAL JOURNAL, 2008, 94 (05) :1826-1835
[3]   Multicolor super-resolution imaging with photo-switchable fluorescent probes [J].
Bates, Mark ;
Huang, Bo ;
Dempsey, Graham T. ;
Zhuang, Xiaowei .
SCIENCE, 2007, 317 (5845) :1749-1753
[4]   Experimental Comparison of the High-Speed Imaging Performance of an EM-CCD and sCMOS Camera in a Dynamic Live-Cell Imaging Test Case [J].
Beier, Hope T. ;
Ibey, Bennett L. .
PLOS ONE, 2014, 9 (01)
[5]   Recovery of intact DNA nanostructures after agarose gel-based separation [J].
Bellot, Gaetan ;
McClintock, Mark A. ;
Lin, Chenxiang ;
Shih, William M. .
NATURE METHODS, 2011, 8 (03) :192-194
[6]   DNA rendering of polyhedral meshes at the nanoscale [J].
Benson, Erik ;
Mohammed, Abdulmelik ;
Gardell, Johan ;
Masich, Sergej ;
Czeizler, Eugen ;
Orponen, Pekka ;
Hogberg, Bjorn .
NATURE, 2015, 523 (7561) :441-U139
[7]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[8]   Resolution improvement by 3D particle averaging in localization microscopy [J].
Broeken, Jordi ;
Johnson, Hannah ;
Lidke, Diane S. ;
Liu, Sheng ;
Nieuwenhuizen, Robert P. J. ;
Stallinga, Sjoerd ;
Lidke, Keith A. ;
Rieger, Bernd .
METHODS AND APPLICATIONS IN FLUORESCENCE, 2015, 3 (01)
[9]   A Primer to Single-Particle Cryo-Electron Microscopy [J].
Cheng, Yifan ;
Grigorieff, Nikolaus ;
Penczek, Pawel A. ;
Walz, Thomas .
CELL, 2015, 161 (03) :438-449
[10]  
Dai MJ, 2016, NAT NANOTECHNOL, V11, P798, DOI [10.1038/nnano.2016.95, 10.1038/NNANO.2016.95]