Rotational symmetry of conical Kahler-Ricci solitons

被引:14
作者
Chodosh, Otis [1 ]
Fong, Frederick Tsz-Ho [2 ]
机构
[1] Stanford Univ, 450 Serra Mall, Stanford, CA 94305 USA
[2] Brown Univ, Box 1917,151 Thayer St, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
BISECTIONAL CURVATURE; NONNEGATIVE CURVATURE; MANIFOLDS; FLOW; UNIFORMIZATION; UNIQUENESS; SHRINKING;
D O I
10.1007/s00208-015-1240-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that expanding Kahler-Ricci solitons which have positive holomorphic bisectional curvature and are C-2-asymptotic to a conical Kohler manifold at infinity must be the U(n)-rotationally symmetric expanding solitons constructed by Cao.
引用
收藏
页码:777 / 792
页数:16
相关论文
共 29 条
[1]  
[Anonymous], 2010, RECENT ADV GEOMETRIC
[2]  
BANDO S, 1984, J DIFFER GEOM, V19, P283
[3]   Two-Dimensional Gradient Ricci Solitons Revisited [J].
Bernstein, Jacob ;
Mettler, Thomas .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (01) :78-98
[4]  
Brendle S, 2014, J DIFFER GEOM, V97, P191
[5]   Rotational symmetry of self-similar solutions to the Ricci flow [J].
Brendle, Simon .
INVENTIONES MATHEMATICAE, 2013, 194 (03) :731-764
[6]  
Bryant R. L., 2005, RICCI FLOW SOLITONS
[7]  
Cabezas- Rivas E., 2015, JEMS IN PRESS
[8]  
Cao HD, 1997, J DIFFER GEOM, V45, P257
[9]  
CHAU A, 2008, SURV DIFFER GEOM, V12, P21
[10]  
Chau A, 2006, J DIFFER GEOM, V73, P491