Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19

被引:106
作者
Zhao, Jing [1 ]
Tian, Saisai [2 ]
Lu, Dong [1 ]
Yang, Jian [2 ]
Zeng, Huawu [2 ]
Zhang, Feng [1 ]
Tu, Dongzhu [1 ]
Ge, Guangbo [1 ]
Zheng, Yuejuan [3 ]
Shi, Ting [3 ]
Xu, Xin [4 ]
Zhao, Shiyi [4 ]
Yang, Yili [4 ]
Zhang, Weidong [1 ,2 ]
机构
[1] Shanghai Univ Tradit Chinese Med, Inst Interdisciplinary Integrat Med Res, Shanghai, Peoples R China
[2] Second Mil Med Univ, Sch Pharm, Shanghai 200433, Peoples R China
[3] Shanghai Univ Tradit Chinese Med, Ctr Tradit Chinese Med & Immunol Res, Sch Basic Med Sci, Shanghai, Peoples R China
[4] Chinese Acad Med Sci, Ctr Syst Med, Suzhou Inst Syst Med, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Network pharmacology; Traditional Chinese medicine; COVID-19; SARS-CoV-2; Drug target; Pathway; CONSTITUENT; TANG;
D O I
10.1016/j.phymed.2020.153315
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: The traditional Chinese medicine (TCM) formula Qing-Fei-Pai-Du decoction (QFPDD) was the most widely used prescription in China's campaign to contain COVID-19,which has exhibited positive effects. However,the under lying mode of action is largely unknown. Purpose: A systems pharmacology strategy was proposed to investigate the mechanisms of QFPDD against COVID-19 from molecule, pathway and network levels. Study design and methods: The systems pharmacological approach consisted of text mining, target prediction, data integration, network study, bioinformatics analysis, molecular docking, and pharmacological validation. Especially, we proposed a scoring method to measure the confidence of targets identified by prediction and text mining, while a novel scheme was used to identify important targets from 4 aspects. Results: 623 high-confidence targets of QFPDD's 12 active compounds were identified, 88 of which were overlapped with genes affected by SARS-CoV-2 infection. These targets were found to be involved in biological processes related with the development of COVID-19, such as pattern recognition receptor signaling, interleukin signaling, cell growth and death, hemostasis, and injuries of the nervous, sensory, circulatory, and digestive systems. Comprehensive network and pathway analysis were used to identify 55 important targets, which regulated 5 functional modules corresponding to QFPDD's effects in immune regulation, anti-infection, anti inflammation, and multi-organ protection, respectively. Four compounds (baicalin, glycyrrhizic acid, hesperidin, and hyperoside) and 7 targets (AKT1, TNF-alpha, IL6, PTGS2, HMOX1, IL10, and TP53) were key molecules related to QFPDD's effects. Molecular docking verified that QFPDD's compounds may bind to 6 host proteins that interact with SARS-CoV-2 proteins, further supported the anti-virus effect of QFPDD. At last, in intro experiments validated QFPDD's important effects, including the inhibition of IL6, CCL2, TNF-alpha, NF-kappa B, PTGS1/2, CYP1A1, CYP3A4 activity, the up-regulation of IL10 expression, and repressing platelet aggregation. Conclusion: This work illustrated that QFPDD could exhibit immune regulation, anti-infection, anti-inflammation, and multi-organ protection. It may strengthen the understanding of QFPDD and facilitate more application of this formula in the campaign to SARS-CoV-2.
引用
收藏
页数:13
相关论文
共 45 条
[1]   The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans [J].
Ardlie, Kristin G. ;
DeLuca, David S. ;
Segre, Ayellet V. ;
Sullivan, Timothy J. ;
Young, Taylor R. ;
Gelfand, Ellen T. ;
Trowbridge, Casandra A. ;
Maller, Julian B. ;
Tukiainen, Taru ;
Lek, Monkol ;
Ward, Lucas D. ;
Kheradpour, Pouya ;
Iriarte, Benjamin ;
Meng, Yan ;
Palmer, Cameron D. ;
Esko, Tonu ;
Winckler, Wendy ;
Hirschhorn, Joel N. ;
Kellis, Manolis ;
MacArthur, Daniel G. ;
Getz, Gad ;
Shabalin, Andrey A. ;
Li, Gen ;
Zhou, Yi-Hui ;
Nobel, Andrew B. ;
Rusyn, Ivan ;
Wright, Fred A. ;
Lappalainen, Tuuli ;
Ferreira, Pedro G. ;
Ongen, Halit ;
Rivas, Manuel A. ;
Battle, Alexis ;
Mostafavi, Sara ;
Monlong, Jean ;
Sammeth, Michael ;
Mele, Marta ;
Reverter, Ferran ;
Goldmann, Jakob M. ;
Koller, Daphne ;
Guigo, Roderic ;
McCarthy, Mark I. ;
Dermitzakis, Emmanouil T. ;
Gamazon, Eric R. ;
Im, Hae Kyung ;
Konkashbaev, Anuar ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Flutre, Timothee ;
Wen, Xiaoquan ;
Stephens, Matthew .
SCIENCE, 2015, 348 (6235) :648-660
[2]   Network biology:: Understanding the cell's functional organization [J].
Barabási, AL ;
Oltvai, ZN .
NATURE REVIEWS GENETICS, 2004, 5 (02) :101-U15
[3]   Will Complement Inhibition Be the New Target in Treating COVID-19-Related Systemic Thrombosis? [J].
Campbell, Courtney M. ;
Kahwash, Rami .
CIRCULATION, 2020, 141 (22) :1739-1741
[4]  
Chinese Thoracic Society C.A.o.C.P., 2020, CHIN J TUBERC RESP D, V43
[5]   The Reactome Pathway Knowledgebase [J].
Fabregat, Antonio ;
Jupe, Steven ;
Matthews, Lisa ;
Sidiropoulos, Konstantinos ;
Gillespie, Marc ;
Garapati, Phani ;
Haw, Robin ;
Jassal, Bijay ;
Korninger, Florian ;
May, Bruce ;
Milacic, Marija ;
Roca, Corina Duenas ;
Rothfels, Karen ;
Sevilla, Cristoffer ;
Shamovsky, Veronica ;
Shorser, Solomon ;
Varusai, Thawfeek ;
Viteri, Guilherme ;
Weiser, Joel ;
Wu, Guanming ;
Stein, Lincoln ;
Hermjakob, Henning ;
D'Eustachio, Peter .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D649-D655
[6]   A SARS-CoV-2 protein interaction map reveals targets for drug repurposing [J].
Gordon, David E. ;
Jang, Gwendolyn M. ;
Bouhaddou, Mehdi ;
Xu, Jiewei ;
Obernier, Kirsten ;
White, Kris M. ;
O'Meara, Matthew J. ;
Rezelj, Veronica V. ;
Guo, Jeffrey Z. ;
Swaney, Danielle L. ;
Tummino, Tia A. ;
Huttenhain, Ruth ;
Kaake, Robyn M. ;
Richards, Alicia L. ;
Tutuncuoglu, Beril ;
Foussard, Helene ;
Batra, Jyoti ;
Haas, Kelsey ;
Modak, Maya ;
Kim, Minkyu ;
Haas, Paige ;
Polacco, Benjamin J. ;
Braberg, Hannes ;
Fabius, Jacqueline M. ;
Eckhardt, Manon ;
Soucheray, Margaret ;
Bennett, Melanie J. ;
Cakir, Merve ;
McGregor, Michael J. ;
Li, Qiongyu ;
Meyer, Bjoern ;
Roesch, Ferdinand ;
Vallet, Thomas ;
Mac Kain, Alice ;
Miorin, Lisa ;
Moreno, Elena ;
Naing, Zun Zar Chi ;
Zhou, Yuan ;
Peng, Shiming ;
Shi, Ying ;
Zhang, Ziyang ;
Shen, Wenqi ;
Kirby, Ilsa T. ;
Melnyk, James E. ;
Chorba, John S. ;
Lou, Kevin ;
Dai, Shizhong A. ;
Barrio-Hernandez, Inigo ;
Memon, Danish ;
Hernandez-Armenta, Claudia .
NATURE, 2020, 583 (7816) :459-+
[7]   Inhibition of human cytochrome P450 enzymes by licochalcone A, a naturally occurring constituent of licorice [J].
He, Wei ;
Wu, Jing-Jing ;
Ning, Jing ;
Hou, Jie ;
Xin, Hong ;
He, Yu-Qi ;
Ge, Guang-Bo ;
Xu, Wei .
TOXICOLOGY IN VITRO, 2015, 29 (07) :1569-1576
[8]   Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China (vol 395, pg 497, 2020) [J].
Huang, C. ;
Wang, Y. ;
Li, X. .
LANCET, 2020, 395 (10223) :496-496
[9]  
Huang M, 2020, PHARM CLIN CHIN MAT, V36, P13
[10]   KEGG: Kyoto Encyclopedia of Genes and Genomes [J].
Kanehisa, M ;
Goto, S .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :27-30